Медицинский портал. Анализы. Болезни. Состав. Цвет и запах

Перспективы развития мировой электроэнергетики. Электроэнергетика - это что такое? Развитие и проблемы электроэнергетики России Перспективы развития отрасли электроэнергетики


ВВЕДЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Историко-географические особенности развития электроэнергетики в России. . . . . . . . . . .4

2. Территориальное размещение производств электроэнергетики в Российской Федерации. 6

3. Единая энергетическая система страны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Проблемы и перспективы развития электроэнергетики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ЗАКЛЮЧЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Список используемых источников. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ПРИЛОЖЕНИЕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

ПРИЛОЖЕНИЕ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

ПРИЛОЖЕНИЕ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

ПРИЛОЖЕНИЕ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

ПРИЛОЖЕНИЕ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

ВВЕДЕНИЕ

Электроэнергетика, ведущая и составная часть энергетики. Она обеспечивает генерирование (производство), трансформацию и потребление электроэнергии, кроме того, электроэнергетика играет районообразующую роль (являясь стержнем материально-технической базы общества), а также способствует оптимизации территориальной организации производительных сил. В экономически развитых странах технические средства электроэнергетики объединяются в автоматизированные и централизованно управляемые электроэнергетические системы.

Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается. Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах.

В сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортном комплексе. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и другие) были созданы благодаря развитию электротехнической промышленности.

Поэтому, актуальность выбранной мною темы является очевидной, также как очевидна важность электроэнергетики в хозяйственной жизни нашей страны.

Итак, задачами и целью данной работы являются:

Рассмотреть структуру электроэнергетики;

Изучить её размещение;

Рассмотреть современный уровень развития электроэнергетики;

Охарактеризовать особенности развития и размещения электроэнергетики в России.

    Историко-географические особенности развития электроэнергетики в России.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.) сроком на 15 лет, который предусматривал строительство 10 ГЭС общей мощностью 640 тыс. кВт. План был выполнен с опережением: к концу 1935 г. было построено 40 районных электростанций. Таким образом, план ГОЭЛРО создал базу индустриализации России, и она вышла на второе место по производству электроэнергии в мире.

В начале XX века в структуре потребления энергоресурсов абсолютно преобладающее место занимал уголь. Например, в развитых странах к 1950г. на долю угля приходилось 74%, а нефти – 17% в общем объеме энергопотребления. При этом основная доля энергоресурсов использовалась внутри стран, где они добывались.

Среднегодовые темпы роста энергопотребления в мире в первой половине XX в. составляли 2-3%, а в 1950-1975гг. - уже 5%.

Чтобы покрыть прирост энергопотребления во второй половине XX в. мировая структура потребления энергоресурсов претерпевает большие изменения. В 50-60-х гг. на смену углю все больше приходят нефть и газ. В период с 1952 по 1972гг. нефть была дешевой. Цена на нее на мировом рынке доходила до 14 долл./т. Во второй половине 70-х также начинается освоение крупных месторождений природного газа и его потребление постепенно наращивается, вытесняя уголь.

До начала 70-х годов рост потребления энергоресурсов был в основном экстенсивным. В развитых странах его темп фактически определялся темпом роста промышленного производства. Между тем, освоенные месторождения начинают истощаться, и начинает расти импорт энергоресурсов, в первую очередь – нефти.

В 1973г. разразился энергетический кризис. Мировая цена на нефть подскочила до 250-300 долл./т. Одной из причин кризиса стало сокращение ее добычи в легкодоступных местах и перемещение в районы с экстремальными природными условиями и на континентальный шельф. Другой причиной стало стремление основных стран - экспортеров нефти (членов ОПЕК), которыми в основном являются развивающиеся страны, более эффективно использовать свои преимущества владельцев основной части мировых запасов этого ценного сырья.

В этот период ведущие страны мира были вынуждены пересмотреть свои концепции развития энергетики. В результате, прогнозы роста энергопотребления стали более умеренными. Значительное место в программах развития энергетики стало отводиться энергосбережению. Если до энергетического кризиса 70-х энергопотребление в мире прогнозировалось к 2000 г. на уровне 20-25 млрд. т условного топлива, то после него прогнозы были скорректированы в сторону заметного уменьшения до 12,4 млрд. т условного топлива.

Промышленно развитые страны принимают серьезнейшие меры по обеспечению экономии потребления первичных энергоресурсов. Энергосбережение все больше занимает одно из центральных мест в их национальных экономических концепциях. Происходит перестройка отраслевой структуры национальных экономик. Преимущество отдается мало энергоемким отраслям и технологиям. Происходит свертывание энергоемких производств. Активно развиваются энергосберегающие технологии, в первую очередь, в энергоемких отраслях: металлургии, металлообрабатывающей промышленности, транспорте. Реализуются масштабные научно-технические программы по поиску и разработке альтернативных энергетических технологий. В период с начала 70х до конца 80х гг. энергоемкость ВВП в США снизилась на 40%, в Японии – на 30%.

В этот же период идет бурное развитие атомной энергетики. В 70-е годы и за первую половину 80-х годов в мире было пущено в эксплуатацию около 65% ныне действующих АЭС.

В этот период в политический и экономический обиход вводится понятие энергетической безопасности государства. Энергетические стратегии развитых стран нацеливаются не только на сокращение потребления конкретных энергоносителей (угля или нефти), но и в целом на сокращение потребления любых энергоресурсов и диверсификацию их источников.

В результате всех этих мер в развитых странах заметно снизился среднегодовой темп прироста потребления первичных энергоресурсов: с 1,8% в 80-е гг. до 1,45% в 1991-2000 гг. По прогнозу до 2015 г. он не превысит 1,25%.

Во второй половине 80-х появился еще один фактор, оказывающий сегодня все большее влияние на структуру и тенденции развития ТЭК. Ученые и политики всего мира активно заговорили о последствиях воздействия на природу техногенной деятельности человека, в частности, влиянии на окружающую среду объектов ТЭК. Ужесточение международных требований по охране окружающей среды с целью снижения парникового эффекта и выбросов в атмосферу (по решению конференции в Киото в 1997г.) должно привести к снижению потребления угля и нефти как наиболее влияющих на экологию энергоресурсов, а также стимулировать совершенствование существующих и создание новых энергетических технологий.

    Территориальное размещение производств электроэнергетики в Российской Федерации.

Электроэнергетика сильнее, чем все другие отрасли промышленности, способствует развитию и территориальной оптимизации размещения производительных сил. Это выражается в следующем (по А.Т.Хрущёву): 1) вовлекаются в использование топливно-энергетические ресурсы, удаленные от потребителей; 2) возможен промежуточный отбор электроэнергии для снабжения ею районов, через которые проходят линии высоковольтных электропередач, что способствует росту уровня территориальной освоенности этих районов, повышению эффективности экономики и уровня комфортности проживания в них; 3) возникают дополнительные возможности для создания электроёмких и теплоёмких производств (в которых доля топливно-энергетических затрат в себестоимости готовой продукции очень велика); 4) электроэнергетика имеет большое районообразующее значение, именно она во многом определяет производственную специализацию районов.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности: 1) концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешёвое топливо и энергоресурсы; 2) комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов; 3) широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения, ирригации, рыбоводства; 4) необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, при условии подчеркнутого и исключительного внимания к соблюдению правил эксплуатации АЭС, обеспечение безопасности и надежности их функционирования; 5) создание энергосистем, формирующих единую высоковольтную сеть страны.

Размещение предприятий электроэнергетики зависят от ряда факторов, основные из них – топливно-энергетические ресурсы и потребители. По степени обеспеченности топливно-энергетическими ресурсами районы России можно разделить на три группы: 1) наиболее высокая – Дальневосточный, Восточно-Сибирский, Западно-Сибирский; 2) относительно высокая – Северный, Северо-Кавказский; 3) низкая – Северо-Западный, Центральный, Центрально-Черноземный, Поволжский, Уральский.

Расположение топливно-энергетических ресурсов не совпадает с размещением населения, производством и потребителем электроэнергии. Подавляющая часть произведенной электроэнергии расходуется в европейской части России. По производству электроэнергии среди экономических районов к концу 1990-х гг. выделялись Центральный, а по потреблению – Уральский. В числе электродефицитных районов: Уральский, Северный, Центрально-Черноземный, Волго-Вятский (см. приложение 1).

Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоёмкие и теплоёмкие производства.

Электроэнергетика включает тепловые электростанции, атомные электростанции, гидроэлектростанции (включая гидроаккумулирующие и приливные), прочие электростанции (ветростанции, гелиостанции, геотермальные), электрические сети, тепловые сети, самостоятельные котельные.

Тепловые электростанции (ТЭС). Основной тип электростанций в России – тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). Основную роль играют мощные (более 2 млн кВт) государственные районные электростанции (ГРЭС), обеспечивающие потребности экономического района и работающие в энергосистемах. На размещение тепловых электростанций оказывают основное влияние топливный и потребительский факторы.

При выборе места для строительства ТЭС учитывают сравнительную эффективность транспортировки топлива и электроэнергии. Если затраты на перевозку топлива превышают издержки на передачу электроэнергии целесообразно размещать непосредственно у источников топлива, при более высокой эффективности транспортировки топлива электростанции размещают вблизи потребителей электроэнергии. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива (чем крупнее электростанция, тем дальше она может передавать энергию).

ГРЭС мощностью более 2 млн кВт расположены в следующих экономических районах: Центральном (Костромская, Рязанская, Конаковская); Уральская (Рефтинская, Троицкая, Ириклинская); Поволжском (Заинская); Восточно-Сибирском (Назаровская); Западно-Сибирском (Сургутские); Северо-Западном (Киришская) (см. приложение 2).

К тепловым электростанциям относятся и теплоэлектроцентрали (ТЭЦ), обеспечивающие теплом предприятия и жилье, с одновременным производством электроэнергии. ТЭЦ размещаются в пунктах потребления пара и горячей воды, поскольку радиус передачи тепла невелик (10-12 км).

Положительные свойства ТЭС:

Относительно свободное размещение, связанное с широким распространением топливных ресурсов в России;

Способность вырабатывать электроэнергию без сезонных колебаний в отличие от ГЭС).

Отрицательные свойства ТЭС:

Используют невозобновимые топливные ресурсы;

Обладают низким коэффициентом полезного действия (КПД);

Оказывают неблагоприятное воздействие на окружающую среду;

Имеют большие затраты на добычу, перевозку, переработку и удаление отходов топлива.

Гидравлические электростанции (ГЭС). Они занимают второе место по количеству вырабатываемой электроэнергии. Гидроэлектростанции являются эффективным источником энергии, поскольку они используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС), имеют высокий КПД (более 80%) 1 , производят самую дешевую энергию.

Определяющее влияние на размещение гидроэлектростанций оказывают размеры запасов гидроресурсов, природные (рельеф местности, характер реки, ее режим и др.) и хозяйственные (размер ущерба от затопления территории, связанного с созданием плотины и водохранилища ГЭС, ущерба рыбному хозяйству и др.), условия их использования.

Запасы гидроресурсов и эффективность использования водной энергии в районах России различны. Большая часть гидроэнергоресурсов страны (более 2/3 запасов) сосредоточена в Восточной Сибири и на Дальнем Востоке. В этих же районах исключительно благоприятны природные условия для строительства и функционирования ГЭС – многоводность, естественная зарегулированность рек (например, реки Ангары озером Байкал), позволяющие вырабатывать электроэнергию на мощных ГЭС равномерно, без сезонных колебаний, наличие скальных оснований для возведения высоких платин и др.

Эти и другие особенности обуславливают здесь более высокую экономическую эффективность строительства ГЭС (удельные капиталовложения в 2-3 раза ниже, а стоимость электроэнергии в 4-5 раз дешевле), чем в районах европейской части страны. Поэтому самые крупные в стране ГЭС построены на реках Восточной Сибири (Ангара, Енисей). На Ангаре, Енисее и других реках России строительство ГЭС ведется, как правило, каскадами, которые представляют собой группу электростанций, расположенных ступенями по течению водного потока, для последовательности использования его энергии. Крупнейший в мире Ангаро-Енисейский гидроэнергетический каскад имеет общую мощность около 22 млн кВт. В его состав входят гидроэлектростанции: Саяно-Шушенская, Красноярская, Иркутская, Братская, Усть-Илимская.

Каскад из мощных электростанций создан также в европейской части страны на Волге и Каме (Волжско-Камский каскад): Волжская (вблизи Самары), Волжская (вблизи Волгограда), Саратовская, Чебоксарская, Воткинская и др.

В приложении 3 представлены основные каскады ГЭС в России.

Менее мощные ГЭС созданы на Дальнем Востоке, в Западной Сибири, на Северном Кавказе и в других районах России. В европейской части страны, испытывающей острый дефицит в электроэнергии, весьма перспективно строительство особого вида гидроэлектростанций – гидроаккумулирующих (ГАЭС). Одна из таких электростанций уже построена – Загорская ГАЭС (1,2 млн. кВт) в Московской области.

Положительные свойства ГЭС: более высокая маневренность и надежность работы оборудования; высокая производительность труда; возобновляемость источника энергии; отсутствие затрат на добычу, перевозку и удаление отходов топлива; низкая себестоимость.

Отрицательные свойства ГЭС: возможность затопления населенных пунктов, сельхозугодий и коммуникаций; отрицательное воздействие на фору, фауну; дороговизна строительства.

Атомные электростанции (АЭС) производят электроэнергию более дешевую, чем ТЭС, работающих на угле или мазуте. Их доля в суммарной выработке электроэнергии в России не превышает 11% (в Литве – 76%, Франции – 76%, Бельгии – 65%, Швеции – 51%, Словакии – 49%, ФРГ – 34%, Японии – 30%, США – 20%).

Главным фактором размещения атомных электростанций, использующих в своей работе высокотранспортабельное, ничтожное по весу топливо (для полной годовой загрузки АЭС требуется всего несколько килограммов урана), - потребительский. Крупнейшие АЭС в нашей стране в основном расположены в районах с напряженным топливно-энергетическим балансом. В России действуют 10 АЭС (см. приложение 4), на которых функционирует 30 энергоблоков. На АЭС эксплуатируется реакторы трех основных типов: водо-водяные (ВВЭР), большой мощности канальные урано-графитовые (РБМК) и на быстрых нейтронах (БН). Атомные электростанции в России объедены в концерн «Росэнергоатом».

Положительные свойства АЭС: их можно строить в любом районе, независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии; АЭС не делают выбросов в атмосферу в условиях безаварийной работы; не поглощают кислород.

Отрицательные свойства АЭС: сложились захоронения радиоактивных отходов (для их вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения); тепловое загрязнение используемых АЭС водоемов.

В отечественной электроэнергетике используются альтернативные источники энергии: солнца, ветра, внутреннего тепла земли, морских приливов. Построены природные электростанции (ПЭС). На приливных волнах на Кольском полуострове сооружена Кислогубская ПЭС (400 кВт), который более 30 лет; На терминальных водах Камчатки поострена Паужетская ГеоТЭС. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера, гелиоустановки на Северном Кавказе.

3. Единая энергетическая система страны

Энергосистема – это группы электростанций разных типов, объединенные высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы. Причем если в составе энергосистемы высока доля ГЭС, то ее маневренные возможности повышаются, а себестоимость электроэнергии относительно ниже; наоборот, в системе, объединяющей только ТЭС, они наиболее ограничены, а себестоимость электроэнергии выше.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Создание ЕЭС имеет экономические преимущества. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара – Москва (500 кВ), Самара – Челябинск, Волгоград – Москва (500 кВ), Волгоград – Донбасс (800 кВ), Москва – Санкт-Петербург (750 кВ).

Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения - Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы - Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанциями, входящими в ЕЭС, вырабатывается более 90% электроэнергии, производимой в независимых государствах – бывших республиках СССР. Объединение энергосистем в ЕЭС позволяет: обеспечить снижение необходимой суммарной установленной мощности электростанций за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; сократить требуемую резервную мощность на электростанциях; осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевить энергетическое строительство; улучшить экологическую ситуацию.

Для совместной работы электроэнергетических объектов, функционирующих в составе Единой энергосистемы, создан координационный орган Электроэнергетический Совет стран СНГ.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

В конце 1992 г. было зарегистрировано Российское акционерное общество энергетики и электрификации (РАО ЕЭС), созданное для управления ЕЭС и организации надежного энергосбережения народного хозяйства и населения. В РАО ЕЭС входят более 700 территориальных АО, оно объединяет около 600 ТЭС, 9 АЭС и более 100 ГЭС. РАО ЕЭС работает параллельно с энергосистемами стран СНГ и Балтии, а также с энергосистемами некоторых стран Восточной Европы. За пределами РАО ЕЭС пока остаются крупные энергосистемы Восточной Сибири.

Контрольный пакет РАО ЕЭС закреплен в государственной собственности. Как естественный монополист компания находится в системе государственного регулирования тарифов на электричество. В отдельных регионах, например на Дальнем Востоке, федеральное правительство субсидирует энерготарифы.

В 1996 году Правительство РФ создало федеральный (общероссийский) оптовый рынок электрической энергии и мощности (ФОРЭМ) для покупки о продажи электроэнергии через сети высоковольтных передач. Практически вся электроэнергия, передаваемая по сетям высоковольтных передач, технически рассматривается как результат сделки на ФОРЭМе. Управляется этот рынок РАО ЕЭС. На ФОРЭМе покупатели и продавцы не заключают контракты друг с другом. Они покупают и продают электроэнергию по фиксированным ценам, а РАО ЕЭС обеспечивает соответствие спроса и предложения. Продавцами электроэнергии, не связанными с РАО ЕЭС, являются атомные электростанции.

4. Проблемы и перспективы развития электроэнергетики.

Основные проблемы развития электроэнергетики России связаны: с технической отсталостью и износом фондов отрасли, несовершенством хозяйственного механизма управления энергетическим хозяйством, включая ценовую и инвестиционную политику, ростом неплатежей энергопотребителей. В условиях кризиса экономики сохраняется высокая энергоемкость производства.

В настоящее время более 18% электростанций полностью выработали свой расчетный ресурс установленной мощности. Очень медленно идет процесс энергосбережения. Правительство пытается решить проблему разных сторон: одновременно идет акционирование отрасли (51% акций остается у государства), привлекаются иностранные инвестиции и начала внедряться программа по снижению энергоемкости производства.

В качестве основных задач развития российской энергетики можно выделить следующее: 1) снижение энергоемкости производства; 2) сохранение единой энергосистемы России; 3) повышение коэффициента используемой мощности энергосистемы; 4) полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга; 5) скорейшее обновление парка энергосистемы; 6) приведение экологических параметров энергосистемы к уровню мировых стандартов.

Сейчас перед отраслью стоит ряд проблем. Важной является экологическая проблема. На данном этапе, в России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз.

Выбросы загрязняющих веществ в атмосферу энергокомпаниями РАО «ЕЭС России» в 2005-2007 г.г. (SO 2 , NO 2 , твердых частиц), тыс. тонн. (рис. 1)

Рисунок 1.

Снижение выбросов в атмосферу в 2007 г. по сравнению с 2006 г. объясняется уменьшением доли сжигания топлива (мазута и угля) с высоким содержанием серы и золы.

За 2007 год энергокомпании РАО ЕЭС России добились следующих производственно-экологических показателей:

Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее не экологична угольная ТЭС, вблизи них радиоактивный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля; при сжигании 1 тонны условного топлива образуется 1,7 тонны углерода против 2,7 тонны при сжигании мазута или угля. Экологические параметры, установленные ранее не обеспечивают полной экологической чистоты, в соответствии с ними строилось большинство электростанций.

Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками на 800 мВт и рукавными фильтрами улавливания пыли, проект ТЭС с парогазовыми установками мощностью по 300 мВт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений. Отдельно рассмотрим проблемы развития атомной энергетики.

Атомная промышленность и энергетика рассматриваются в Энергетической стратегии (2005-2020гг.) как важнейшая часть энергетики страны, поскольку атомная энергетика потенциально обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики после 2020 г., сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи по максимальному варианту: строительство новых АЭС с доведением установленной мощности атомных станций до 32 ГВт в 2010 г. и до 52,6 ГВт в 2020 г.; продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

В этом варианте, в частности, намечена достройка в 2000-2010 годы 5 ГВт атомных энергоблоков (двух блоков – на Ростовской АЭС и по одному – на Калининской, Курской и Балаковской станциях) и новое строительство 5,8 ГВт атомных энергоблоков (по одному блоку на Нововоронежской, Белоярской, Калининской, Балаковской, Башкирской и Курской АЭС). В 2011 – 2020 гг. предусмотрено строительство четырех блоков на Ленинградской АЭС, четырех блоков на Северо-Кавказской АЭС, трех блоков Башкирской АЭС, по два блока на Южно-Уральской, Дальневосточной, Приморской, Курской АЭС –2 и Смоленской АЭС – 2, на Архангельской и Хабаровской АТЭЦ и по одному блоку на Нововоронежской, Смоленской и Кольской АЭС – 2.

Одновременно в 2010 – 2020 гг. намечено вывести из эксплуатации 12 энергоблоков первого поколения на Билибинской, Кольской, Курской, Ленинградской и Нововоронежской АЭС.

Основные задачи по минимальному варианту – строительство новых блоков с доведением мощности АЭС до 32 ГВт в 2010 г. и до 35 ГВт в 2020 г. и продление назначенного срока службы действующих энергоблоков на 10 лет.

Основой электроэнергетики России на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли составит к 2010 г. 68%, а к 2020 г. – 67-70% (2000 г. – 69%). Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране (2000 г. – 67%).

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях (почти на 40-80 % к 2020 г.), обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике.

Суммарная потребность для электростанций России в органическом топливе возрастет с 273 млн т у.т. в 2000 г. до 310-350 млн т у.т. в 2010 г. и до 320-400 млн т у.т. в 2020 г. Относительно не высокий прирост потребности в топливе к 2020 г. по сравнению с выработкой электроэнергии связан с практически полной заменой к этому периоду существующего неэкономичного оборудования на новое высокоэффективное, что требует осуществления практически предельных по возможностям вводов генерирующей мощности. В высоком варианте в период 2011-2015 гг. на замену старого оборудования и для обеспечения прироста потребности предлагается вводить 15 млн кВт в год и в период 2016-2020 гг. до 20 млн кВт в год. Любое отставание по вводам приведет к снижению эффективности использования топлива и соответственно к росту его расхода на электростанциях, по сравнению с определенными в Стратегии уровнями.

Необходимость радикального изменения условий топливного обеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований обусловливает существенные изменения структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным в большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже – и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России Энергетической стратегией предусматривается:

1) создание сильной электрической связи между восточной и европейской частями ЕЭС России, путем сооружения линий электропередачи напряжением 500 и 1150 кВ. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;

2) усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги – ОЭС Центра – ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала – ОЭС Средней Волги – ОЭС Центра и ОЭС Урала – ОЭС Северо-Запада для выдачи избыточной мощности ГРЭС Тюмени;

3) усиление системообразующих связей между ОЭС Северо-Запада и Центра;

4) развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Альтернативная энергетика. Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находятся пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Ресурсный потенциал нетрадиционных и возобновляемых источников энергии составляет порядка 5 млрд. т условного топлива в год, а экономический потенциал в самом общем виде достигает не менее 270 млн. т условного топлива (рис. 2).

Пока все попытки использования нетрадиционных и возобновляемых источников энергии в России носят экспериментальный и полуэкспериментальный характер или в лучшем случае такие источники играют роль местных, строго локальных производителей энергии. Последнее относится и к использованию энергии ветра. Это происходит потому, что Россия еще не испытывает дефицита традиционных источников энергии и ее запасы органического топлива и ядерного горючего пока достаточно велики. Однако и сегодня в удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживание ее зачастую некому, «нетрадиционные» источники электроэнергии – наилучшее решение проблемы.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие – задача всей экономической политики государства.

ЗАКЛЮЧЕНИЕ

Сегодня мощность всех электростанций России составляет око­ло 212,8 млн. кВт. В последние годы произошли огромные органи­зационные изменения в энергетике. Создана акционерная компа­ния РАО «ЕЭС России», управляемая советом директоров и осуще­ствляющая производство, распределение и экспорт электроэнергии. Это крупнейшее в мире централизованно управляемое энергетиче­ское объединение. Фактически в России сохранилась монополия на производство электроэнергии.

При развитии энергетики огромное значение придается вопро­сам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также каждого экономического района на перспективу.

Одним из принципов размещения электроэнергетики на совре­менном этапе развития рыночного хозяйства является преимущест­венное строительство небольших по мощности тепловых электро­станций, внедрение новых видов топлива, развитие сети дальних высоковольтных электропередач.

Существенная особенность развития и размещения электро­энергетики - широкое строительство теплоэлектроцентралей (ТЭЦ) для теплофикации различных отраслей промышленности и коммунального хозяйства.

Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). На их долю приходится около 68% производства электроэнергии.

Основную роль играют мощные (более 2 млн кВт) ГРЭС - госу­дарственные районные электростанции, обеспечивающие потребно­сти экономического района и работающие в энергосистемах.

ГЭС занимает второе место по количеству вырабатываемой электроэнергии (в 2000 г. около 18%). Гидроэлектростанции являют­ся весьма эффективным источником энергии, поскольку использу­ют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют вы­сокий КПД - более 80%. В результате производимая на ГЭС энер­гия - самая дешевая.

Преимущества АЭС состоят в том, что их можно строить в лю­бом районе независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии (в 1 кг основно­го ядерного топлива - урана - содержится энергии столько же, сколько в 2500 т угля). АЭС не дают выбросов в атмосферу в усло­виях безаварийной работы (в отличие от ТЭС), не поглощают ки­слород.

В последние годы в России возрос интерес к использованию альтернативных источников энергии – солнца, ветра, внутреннего тепла Земли, морских приливов.

Разработана программа, согласно которой в первой половине XXI в. должны построить ветровые электростанции - Калмыцкую, Тувинскую, Магаданскую, Приморскую и геотермальные электро­станции - Верхне-Мугимовскую, Океанскую.

В перспективе Россия должна отказаться от строительства но­вых крупных тепловых и гидравлических станций, требующих ог­ромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Даль­нем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые мощные кон­денсационные ГРЭС будут строиться на углях Канско-Ачинского бассейна.

Список используемых источников

    Архангельский В. Электроэнергетика – комплекс общегосударственного значения. – БИКИ, №140, 2003

    Винокуров А.А. Введение в экономическую географию и региональную экономику России. Часть 1. – М., ВЛАДОС-ПРЕСС. 2003

    Гладкий Ю.Н., Доброскок В.А., Семенов С.П. Социально-экономическая география: Учебное пособие. – М., Наука. 2001

    Дронов В.П. Экономическая и социальная география. – И. Проспект. 1996

    Козьева И.А., Кузьбожев Э.Н. Экономическая география и регионалистика: Учебное пособие для вузов. - 2-е изд., перераб. и доп. – Курск. КГТУ. 2004

    Макаров А. Электроэнергетика России: производственные перспективы и хозяйственные отношения. – Общество и экономика, № 7-8, 2003

    Российский статистический ежегодник. – М., 2001

    Скопин А.Ю. Экономическая география России: учебник. – М. ТК Велби. Изд-во Проспект. 2005

    «Экономическая газета» № 3, 2008.

    Экономическая география и регионолистика. / Под ред. Е.В. Вавилова. – М. Гардарики. 2004

    Экономическая география: Учебное пособие. / Под ред. Жлетикова В.П. – Ростов-на-Дону. Феникс. 2003

    Экономическая и социальная география России: Учебник для вузов. / Под ред. проф. А.Т. Хрущева – 2-е изд., стереотип. – М. Дрофа. 2002

  1. http://www. gks .ru/
  2. http://www. slon .ru/

ПРИЛОЕНИЕ 1.

Производство электроэнергии по экономическим районам России 2

Экономические районы

млрд кВт*ч

млрд кВт*ч

млрд кВт*ч

млрд кВт*ч

Россия в целом

Северный

Северо-Западный

Центральный

Волго-Вятский

Центрально-Черноземный

Поволжский

Северо-Кавказский

Уральский

Западно-Сибирский

Восточно-Сибирский

Дальневосточный

Калининградская обл.


Производство и распределение энергии 3

ПРИЛОЖЕНИЕ 2.

ГРЭС мощностью более 2 млн кВт

Экономический район

Субъект Федерации

Мощность, млн кВт

Северо-Западный

Ленинградская обл. (Кириши)

Киришская

Центральный

Костромская обл.(пос. Волгореченск)

Костромская

Мазут, газ

Рязанская обл. (пос. Новомичуринск)

Рязанская

Уголь, мазут

Тверская обл. (Конаково)

Конаковская

Мазут, газ

Северо-Кавказский

Ставропольский край (пос. Солнечнодольск)

Ставропольская

Поволжский

Республика Татарстан (Заинск)

Заинская

Уральский

Свердловская обл. (пос. Рефтинский)

Рефтинская

Челябинская обл. (Троицк)

Троицкая

Оренбургская обл. (пгт. Энергетик)

Ириклинская

Мазут, газ

Западно-Сибирский

Ханты-Мансийский автономный округ (Сургут)

Сургутская ГРЭС-1

Сургутская ГРЭС-2

Восточно-Сибирский

Красноярский край (Назарово)

Назаровская

Красноярский край (Березовское)

Березовская

Дальневосточный

Республика Саха (Нерюнгри)

Нерюнгринская

ПРИЛОЕНИЕ 3.

Размещение основных каскадов ГЭС

Экономический район

Субъект Федерации

Мощность, млн кВт

Восточно-Сибирский (Ангаро-Енисейский каскад)

Республика Хакасия (пос. Майна, на р. Енисее)

Саяно-Шушенская

Красноярский край (Дивногорск, на р. Енисее)

Красноярская

Иркутская обл. (Братск, на р. Ангаре)

Братская

Иркутская обл. (Усть-Илимск, на р. Анаре)

Усть-Илимская

Иркутская обл. (Иркутск, на р. Ангаре)

Иркутская

Красноярский край (Богучаны, на р. Ангаре)

Богучанская

Поволжский (Волжско-Камский каскад, всего включает 13 гидроузлов мощностью 115 млн кВт)

Волгоградская обл. (Волгоград, на р. Волге)

Волжская (Волгоград)

Самарская обл. (Самара, на р. Волге)

Волжская (Самара)

Саратовская обл. (Балаково, на р. Волга)

Саратовская

Республика Чувашия (Новочебоксарск, на р. Волге)

Чебоксарская

Республика Удмуртия (Воткинск, на р. Каме)

Воткинская

ПРИЛОЖЕНИЕ 4.

Атомные электростанции России

Экономический район

Город, субъект Федерации

Тип реактора

Мощность, млн кВт

Северо-Западный

Сосновый бор, Ленинградская обл.

Ленинградская

Центрально-Черноземный

Курчатов, Курская обл.

Поволжский

Балаково, Саратовская обл.

Балаковская

Центральный

Рославль, Смоленская обл.

Смоленская

Удомля, Тверская обл.

Калининская

Центрально-Черноземный

Нововоронеж, Воронежская обл.

Нововоронежская

Северный

Кандалакша, Мурманская обл.

Кольская

Уральский

пос. Заречный (Свердловская обл.)

Белоярская

Дальневосточный

Пос. Билибино, Чукотский автономный округ

Билибинская

Северо-Кавказский

Волгодинск, Ростовская обл.

Волгодонская

Качественные характеристики работы

Максимальный балл

Оценка работы по формальным критериям:

Соблюдение сроков сдачи работы по этапам написания

Внешний вид работы и правильность оформления титульного листа

Наличие правильно оформленного плана (оглавления)

Указание страниц в оглавлении работы и их нумерация в тексте

Наличие в тексте сносок и гиперссылок

Наличие и качество иллюстративного материала, приложений

Правильность оформления списка литературы

Оценка работы по содержанию

Актуальность проблематики

Логическая структура работы и ее отражение в плане, сбалансированность разделов

Качество введения

Соответствие содержания работы заявленной теме, глубина проработки темы

Качество выполнения картосхем, расчетов (практической части курсовой работы)

Соответствие содержания разделов их названию

Логическая связь между разделами

Степень самостоятельности в изложении, умение делать выводы, обобщения

Качество заключения

Использование новейшей литературы, статистических справочников

III .

Наличие ошибок принципиального характера


развитие развития этой отрасли. Сейчас электроэнергетика России переживает далеко не лучшие... О. П. Электроэнергетика России . – М.: Рынок ценных бумаг, 2001. – 157с. Дьяков А. Ф. Основные направления развития энергетики России . – М.: ...

Современное развитие экономики остро выявило основные проблемы развития энергетического комплекса. Эра углеводородов медленно, но верно подходит к своему логическому завершению. Ей на смену должны прийти инновационные технологии, с которыми связываются основные перспективы энергетики .

Проблемы энергетического комплекса

Пожалуй, одной из важнейших проблем энергетического комплекса можно считать высокую стоимость энергии, приводящую, в свою очередь, к удорожанию себестоимости выпускаемой продукции. Несмотря на то, что в последние годы активно ведутся разработки, способные позволить использование , ни одна низ них на сегодняшний момент не способна полностью вытеснить углеводороды с мировой энергетической арены. Альтернативные технологии – дополнение к традиционным источникам, но не их замена, по крайней мере, сейчас.

В условиях России проблема усугубляется еще и состоянием упадка энергетического комплекса. Электрогенерирующие комплексы находятся не в самом лучшем состоянии, многие электростанции физически разрушаются. В результате стоимость электроэнергии не снижается, а постоянно возрастает.

Долгое время мировое энергетическое сообщество делало ставку на атом, но это направление развития также можно назвать тупиковым. В европейских странах наблюдается тенденция к постепенному отказу от АЭС. Несостоятельность энергии атома подчеркивается еще и тем, что за долгие десятилетия развития она так и не смогла вытеснить углеводороды.

Перспективы развития

Как уже отмечалось, перспективы развития энергетики , в первую очередь, связываются с разработкой эффективных альтернативных источников. Наиболее изученными направлениями в этой области являются:

  • Биотопливо.
  • Ветроэнергетика.
  • Геотермальная энергетика.
  • Гелиоэнергетика.
  • Термоядерная энергетика (УТС).
  • Водородная энергетика.
  • Приливная энергетика.

Ни одно из этих направлений не способно решить проблему энергетического кризиса, когда простого дополнения старых источников энергии альтернативными уже недостаточно. Разработки ведутся в разных направлениях и находятся на различных стадиях своего развития. Тем не менее, уже можно очертить круг технологий, которые способны положить начало :

  • Вихревые теплогенераторы. Такие установки используются достаточно давно, найдя свое применение в теплоснабжении домов. Прокачиваемая через систему трубопроводов рабочая жидкость нагревается до 90 градусов. Несмотря на все преимущества технологии, она еще далека от окончательного завершения разработок. Например, в последнее время активно изучается возможность использования в качестве рабочей среды не жидкости, а воздуха.
  • Холодный ядерный синтез. Еще одна технология, развивающаяся примерно с конца 80-х годов прошлого века. В ее основе лежит идея получения ядерной энергии без сверхвысоких температур. Пока направление находится на стадии лабораторных и практических исследований.
  • На стадии промышленных образцов находятся магнитомеханические усилители мощности, использующие в своей работе магнитное поле Земли. Под его воздействием увеличивается мощность генератора и увеличивается количество получаемой электроэнергии.
  • Очень перспективными представляются энергетические установки, в основе которых лежит идея динамической сверхпроводимости. Суть идеи проста – при определенной скорости возникает динамическая сверхпроводимость, позволяющая генерировать мощное магнитное поле. Исследования в этой области идут довольно давно, накоплен немалый теоретический и практический материал.

Это только крошечный перечень инновационных технологий, каждая из которых обладает достаточным потенциалом развития. В целом, мировое научное сообщество способно развивать не только альтернативные источники энергии, которые уже можно назвать старыми, но и по-настоящему инновационные технологии.

Нельзя не отметить, что в последние годы все чаще появляются технологии, которые еще недавно казались фантастическими. Развитие подобных источников энергии способно полностью преобразить привычный мир. Назовем только самые известные из них:

  • Нанопроводниковые аккумуляторы.
  • Технологии беспроводной передачи энергии.
  • Атмосферная электроэнергетика и т. д.

Следует ожидать, что в ближайшие годы появятся и другие технологии, разработка которых позволит отказаться от использования углеводородов и, что немаловажно, снизить себестоимость энергии.

В 2003 г. была разработана программа «Энергетическая стратегия России», которая на период до 2020 г. предусматривала высокоэффективное производство электроэнергии, экономичные системы её передачи, распределения и использования.

Разработанная в 2010 г. Минэнерго РФ и ОАО «СО ЕЭС» «Программа модернизации электроэнергетики России на период до 2030 г.» имеет следующие главные цели:

а) кардинальное обновление электроэнергетики на базе отечественного и мирового опыта;

б) преодоление нарастающего технологического отставания;

в) морального и физического старения основных фондов;

г) повышение надёжности энергоснабжения;

д) повышение энергетической безопасности страны;

е) снижение тарифов на электроэнергию и тепло.

В Программе предусматривается создание эффективной системы управления функционированием электроэнергетики России, на базе новых перспективных технологий управления производством, передачей и распределением электроэнергии, созданием технологических интеллектуальных электроэнергетических систем и новых энергетических технологий на базе, например:

Распределённой генерации электроэнергии с использованием возобновляемых источников энергии;

Новых проводников для линий электропередач и накопителей энергии;

Прямого преобразования солнечной энергии;

Котлов с циркулирующим кипящим слоем.

Решение этих задач должно сочетаться с углубленным анализом вопросов развития, функционирования, устойчивости и надежности Единой энергетической системы России, ее связей с электроэнергетическими системами других стран, в первую очередь стран СНГ.

К стратегическим целям развития отечественной электроэнергетики в перспективе до 2030 г. следует отнести решение проблемы энергетической безопасности, как важнейшей составляющей государственной энергетической политики, являющейся составной частью национальной безопасности России. При этом развитие электроэнергетики должно обеспечить:

Гарантию надежного энергоснабжения предприятий и населения страны электроэнергией;

Повышение эффективности использования энергоресурсов за счет использования энергосберегающих технологий;

Повышение эффективности функционирования энергетической системы России;

Создание и сохранение целостности Единой энергетической системы на всей территории России с усилением ее интеграции с другими энергетическими объединениями на Евразийском континенте;

Уменьшение вредного воздействия энергетической отрасли на окружающую среду.

Целевые показатели программы включают в себя следующие основные базовые ожидаемые показатели её осуществления:

1. Снижение удельного расхода топлива на отпуск электроэнергии от ТЭС с 332,7 до 300 у.т. /(кВт·ч) в 2020 г. и до 270 у.т. /(кВт·ч) в 2030 г.

2. Сокращение потерь электроэнергии в Единой национальной электросети с 4,6 до 3,5 % в 2020 г. и до 3 % в 2030 г.

3. Сокращение потерь электроэнергии в распределительных электрических сетях с 8,9 до 6,5 % в 2020 г. и 5 % в 2030 г.

Результаты выполненных исследований оптимального развития генерирующих мощностей выявили, что основная часть вводов генерирующих мощностей должна быть осуществлена на ТЭС (от 70 до 180 млн кВт в зависимости от уровня электропотребления) в районах, нуждающихся в новых генерирующих мощностях.

Основным направлением технического перевооружения и реконструкции тепловых электростанций является замена вырабатывающих свой ресурс энергоустановок новыми передовыми, высокоэффективными технологиями и оборудованием, которое размещается в действующих или новых главных корпусах на тех же площадках. На тепловых газовых электростанциях используются установки комбинированного цикла, на тепловых угольных электростанциях – установки со сжиганием топлива в циркулирующем кипящем слое. В отдаленном будущем будут применяться угольные технологии комбинированного цикла с предварительной газификацией угля или его сжиганием в котлах, оборудованных топками с кипящим слоем под давлением.

Вводы генерирующих мощностей на ГЭС и АЭС оказываются незначительными по сравнению с вводами на ТЭС, что связано с существенными капитальными затратами на их строительство и длительным сроком сооружения. Поэтому основными направлениями развития гидроэнергетики в России, например до 2015 г., являются обеспечение реконструкции и технического перевооружения действующих ГЭС, завершение начатого строительства ГЭС, сохранение экономически оправданных темпов гидроэнергетического строительства в последующей перспективе (с суммарным вводом около 2-3 ГВт мощности ГЭС в течение каждых последующих пяти лет).

В Сибири, на Дальнем Востоке, Северном Кавказе, Северо-Западе и в европейской части должны быть достроены гидроэлектростанции общей мощностью около 9000 МВт. Потребность в ускоренном вводе отдельных начатых строительств ГЭС (Бурейская на Дальнем Востоке, Зеленчукская и Ирганайская на Северном Кавказе) обусловлена острым дефицитом электроэнергии в районах их расположения.

Перечень перспективных проектов гидроэнергетических объектов включает в себя десятки средних и крупных гидроэнергоузлов общей мощностью около 40 млн кВт. Наиболее перспективными регионами гидроэнергостроительства в России остаются Дальний Восток, Северо-Запад и Северный Кавказ.

Важным дополнением к развитию традиционной гидроэнергетики является развитие малой гидроэнергетики. В период до 2030 г. может быть сооружено большое число малых ГЭС единичной мощностью менее 30 МВт с суммарной годовой выработкой электроэнергии 2,2 млрд кВт·ч (преимущественно в европейской части страны).

Развитие ядерной энергетики связано с завершением строительства и вводом в эксплуатацию блоков высокой степени готовности, а также проведением работ по продлению срока службы АЭС на экономически оправданный период времени. В долгосрочной перспективе вводы мощности на АЭС будут связаны с заменой демонтируемых блоков на ряде существующих станций на энергоблоки нового поколения, отвечающие современным требованиям безопасности. Предусмотрено строительство головного энергоблока нового поколения на опытной АЭС в поселке Сосновый Бор; сооружением Смоленской АЭС-2 и Южно-Уральской АЭС.

Предполагается существенно расширить использование нетрадиционных возобновляемых источников энергии там, где это экономически выгодно:

Ветроустановок для удаленных потребителей;

Солнечных установок для отопления и горячего водоснабжения;

Выходов геотермальных вод;

Установок по производству биогаза из отходов животноводства.

Доля нетрадиционных источников, включая использование малых рек, может составить к 2015 г. 1,0–1,5 % в общем энергобалансе страны.

В России имеется значительный потенциал приливной энергии, оцениваемый в 270 млрд кВт·ч. В качестве перспективных объектов могут рассматриваться: Тугурская (приливная электрическая станция) ПЭС в южной части Охотского моря, Мезенская ПЭС на Белом море, однако ввод этих объектов возможен лишь в отдалённой перспективе.

При формировании единой энергосистемы России и единого энергообъединения на всем Евразийском континенте ключевыми проблемами становятся проблемы повышения пропускных способностей межсистемных связей.

Программа развития существующей электрической сети России должна предусматривать в ближайшее десятилетие устранение существующих технологических ограничений по передаче электроэнергии между различными регионами России, в том числе обеспечивать лучшее использование энергетических возможностей сибирских гидроэлектростанций. В настоящее время «запертые» мощности региона составляют около 10 млн кВт. Эту задачу можно решить путем создания надежных межсистемных связей, обеспечивающих параллельную работу энергосистем Европейской части, Сибири и Дальнего Востока.

Одним из наиболее эффективных способов решения проблемы повышения пропускных способностей и управляемости линий электропередачи является применение гибких (управляемых) электропередач. Эта принципиально новая технология в области электроэнергетики основана на широком внедрении силовой электроники или преобразовательной техники последнего поколения, новейших технологий в области высокотемпературной сверхпроводимости, микропроцессорных систем автоматического управления и регулирования.

Управление линиями электропередач (ЛЭП) – часть общей системы управления потоками мощности в сетях, включения резервных источников электроэнергии, оптимизации режимов работы ЛЭП и генераторов на электростанциях, в том числе за счет использования различных накопителей электроэнергии (индуктивных, емкостных, электрохимических и других). Все это невозможно осуществить без создания глобальной системы обмена информацией о состоянии всех элементов системы, включая источники, сети и потребителей, а также общей системы управления балансом мощности и энергии в системе.

Электроэнергетика, как и другие отрасли промышленности, имеет свои проблемы и перспективы развития.

В настоящее время электроэнергетика России находится в кризисе. Понятие "энергетический кризис" можно определить, как напряженное состояние, сложившееся в результате несовпадения между потребностями современного общества в энергии и запасами энергоресурсов, в том числе вследствие нерациональной структуры их потребления.

В России можно на данный момент выделить 10 групп наиболее острых проблем:

  • 1). Наличие большой доли физически и морально устаревшего оборудования. Увеличение доли физически изношенных фондов приводит к росту аварийности, частым ремонтам и снижению надежности энергоснабжения, что усугубляется чрезмерной загрузкой производственных мощностей и недостаточными резервами. На сегодняшний день износ оборудования одна из важнейших проблем электроэнергетики. На российских электростанциях он очень велик. Наличие большой доли физически и морально устаревшего оборудования усложняет ситуацию с обеспечением безопасности работы электростанций. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования ведется недопустимо низкими темпами и в явно недостаточном объеме (таблица).
  • 2). Основной проблемой энергетики является также то, что наряду с черной и цветной металлургией энергетика оказывает мощное негативное влияние на окружающую среду. Предприятия энергетики формируют 25 % всех выбросов промышленности.

В 2000 году объемы выбросов вредных веществ в атмосферу составляли 3,9 тонн в том числе выбросы от ТЭС - 3, 5 млн тонн. На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24 %. То есть ТЭС являются главной причиной формирования кислотных остатков.

Крупнейшими загрязнителями атмосферы являются Рафтинская ГРЭС (г. Асбест, Свердловская область) - 360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Верхнетагильская (Свердловская обл.) - 72 тыс. тонн.

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России.

Объем сточных вод, сброшенных предприятиями отрасли в поверхностные водоёмы, в 2000 г. Составил 26,8 млрд куб. м. (на 5,3% больше чем в 1999г.). Крупнейшими источниками загрязнения водных объектов являются ТЭЦ, в то время как ГРЭС - главных источников загрязнения воздуха. Это ТЭЦ-2 (г. Владивосток) - 258 млн куб. м, Безымянская ТЭЦ (Самарская область) - 92 млн куб. м, ТЭЦ-1 (г. Ярославль) - 65 млн куб. м, ТЭЦ-10 (г. Ангарск, Иркутская обл.) - 54 млн куб. м, ТЭЦ-15 и Первомайская ТЭЦ (Санкт-Петербург) - суммарно 81 млн куб. м.

В энергетике образуется и большое количество токсичных отходов (шлаки, зола). В 2000 г. объем токсичных отходов составил 8,2 млн тонн.

Помимо загрязнения воздуха и воды, предприятия энергетики загрязняют почвы, а гидроэлектростанции оказывают сильнейшее воздействие на режим рек, речные и пойменные экосистемы.

  • 3). Жесткая тарифная политика. В электроэнергетике поставлены вопросы об экономичном использовании энергии и о тарифах на неё. Можно говорить о необходимости экономии вырабатываемой электроэнергии. Ведь в настоящее время в стране расходуется на единицу продукции в 3 раза больше энергии, чем в США. В этой области предстоит большая работа. В свою очередь тарифы на энергию растут опережающими темпами. Действующие в России тарифы и их соотношение не соответствуют мировой и европейской практике. Существующая тарифная политика привела к убыточной деятельности и низкой рентабельности ряда АО-энерго.
  • 4). Ряд районов уже испытывает трудности с обеспечением электроэнергией. Наряду с Центральным районом, дефицит электроэнергии отмечается в Центрально-Черноземном, Волго-Вятском и Северо-Западном экономических районах. Например, в Центральном экономическом районе в 1995 году было произведено огромное количество электроэнергии - 19% от общероссийских показателей (154,7 млрд. кВт), но она вся расходуется внутри региона.
  • 5). Сокращается прирост мощностей. Это объясняется некачественным топливом, изношенностью оборудования, проведением работ по повышению безопасности блоков и рядом других причин. Неполное использование мощностей ГЭС происходит из-за малой водности рек. В настоящее время 16 % мощностей электростанций России уже отработали свой ресурс. Из них на ГЭС приходится 65%, на ТЭС - 35 %. Ввод новых мощностей сократился до 0,6 - 1,5 млн кВт в год (1990-2000гг.) по сравнению с 6-7 млн кВт в год (1976-1985гг.).
  • 6). Возникшее противодействие общественности и местных органов власти размещению объектов электроэнергетики в связи с их крайне низкой экологической безопасностью. В частности после Чернобыльской катастрофы были прекращены многие изыскательные работы, строительство и расширение АЭС на 39 площадках общей проектной мощностью 109 млн кВт.
  • 7). Неплатежи, как со стороны потребителей электроэнергии, так и со стороны энергокомпаний за топливо, оборудование и др.;
  • 8). Недостаток инвестиций, связанный как с проводимой тарифной политикой, так и с финансовой "непрозрачностью" отрасли. Крупнейшие западные стратегические инвесторы готовы вкладывать средства в российскую электроэнергетику лишь при условии роста тарифов, чтобы обеспечить возвратность вложений.
  • 9). Перебои в энергоснабжении отдельных регионов, в частности Приморья;
  • 10). Невысокий коэффициент полезного использования энергоресурсов. Это значит, что 57% энергоресурсов ежегодно теряется. Большая часть потерь происходит на электростанциях, в двигателях, непосредственно использующих горючее, а также в технологических процессах, где топливо служит сырьем. При транспортировке топлива также происходят большие потери энергоресурсов.

Что же касается перспектив развития электроэнергетики в России, то, несмотря на все свои проблемы, электроэнергетика имеет достаточные перспективы.

Например, работа ТЭС требует добычи огромного объема невозобновляемых ресурсов, имеет достаточно низкий КПД, ведет к загрязнению окружающей среды. В России тепловые электростанции работают на мазуте, газе, угле. Однако на данном этапе привлекательными являются региональные энергокомпании с высоким удельным весом газа в структуре топливного баланса, как более эффективного и экологически выгодного топлива. В частности можно отметить, что электростанции, работающие на газе, выбрасывают в атмосферу на 40% меньше углекислого газа. Кроме того газовые станции имеют более высокий коэффициент использования установленной мощности по сравнению с мазутными и угольными станциями, отличаются более стабильным теплоснабжением и не несут затрат по хранению топлива. Работающие на газе станции находятся в лучшем состоянии, чем угольные и мазутные, так как они относительно недавно введены в эксплуатацию. А также цены на газ регулируются государством. Таким образом, становится более перспективным строительство тепловых электростанций, топливом для которых является газ. Также на ТЭС перспективно использование пылеочистительного оборудования с максимально возможным КПД, при этом образующуюся золу использовать в качестве сырья при производстве строительных материалов.

Строительство ГЭС в свою очередь требует затопления большого количества плодородных земель, или в результате давления воды на земную кору ГЭС может вызвать землетрясение. Кроме этого сокращаются рыбные запасы в реках. Перспективным становится строительство сравнительно небольших ГЭС, не требующих серьезных капиталовложений, работающих в автоматическом режиме преимущественно в горной местности, а также - обваловка водохранилищ для освобождения плодородных земель.

Что же касается ядерной энергетики, то строительство АЭС имеет определенный риск, из-за того, что трудно предсказать масштабы последствий при осложнении работы энергоблоков АЭС или при форс-мажорных обстоятельствах. Также не решена проблема утилизации твердых радиоактивных отходов, несовершенна и система защиты. Ядерная электроэнергетика имеет наибольшие перспективы в развитии термоядерных электростанций. Это практически вечный источник энергии, почти безвредный для окружающей среды. Развитие атомной электроэнергетики в ближайшей перспективе будет основано на безопасной эксплуатации существующих мощностей, с постепенной заменой блоков первого поколения наиболее совершенными российскими реакторами. Наибольший ожидаемый рост мощностей произойдет за счет завершения строительства уже начатых станций.

Существует 2 противоположные концепции дальнейшего существования ядерной электроэнергетики в стране.

  • 1. Официальная, которая поддерживается Президентом и Правительством. Основываясь на положительных чертах АЭС, они предлагают программу широкого развития электроэнергетики России.
  • 2. Экологическая, во главе которой стоит академик Яблоков. Сторонники этой концепции полностью отвергают возможность нового строительства атомных электростанций, как по экологическим, так и по экономическим соображениям.

Есть и промежуточные концепции. Например ряд специалистов считает, что нужно ввести мораторий на строительство атомных электростанций опираясь на недостатки АЭС. Другие же предполагают, что остановка развития ядерной электроэнергетики может привести к тому, что Россия полностью потеряет свой научно-технический и промышленный потенциал в ядерной энергетике.

Исходя из всех негативных влияний традиционной энергетики на окружающую среду, большое внимание уделяется изучению возможностей использования нетрадиционных, альтернативных источников энергии. Практическое применение уже получили энергия приливов и отливов и внутреннее тепло Земли. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера. Ведутся работы по изучению возможности использования биомассы в качестве источника энергии. В будущем, возможно, огромную роль будет играть гелиоэнергетика.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности:

  • 1. концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешевое топливо и энергоресурсы;
  • 2. комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов;
  • 3. широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения;
  • 4. необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, с учетом безопасности использования АЭС;
  • 5. создание энергосистем, формирующих единую высоковольтную сеть страны.

В настоящий момент России нужна новая энергетическая политика, которая была бы достаточно гибкой и предусматривала все особенности данной отрасли, в том числе и особенности размещения. В качестве основных задач развития российской энергетики можно выделить следующие:

ь Снижение энергоемкости производства.

ь Сохранение целостности и развитие Единой энергетической системы России, ее интеграция с другими энергообъединениями на Евразийском континенте;

ь Повышение коэффициента используемой мощности электростанций, повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе современных технологий;

ь Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены.

ь Скорейшее обновление парка электростанций.

ь Приведение экологических параметров электростанций к уровню мировых стандартов, снижение вредного воздействия на окружающую среду

Исходя из данных задач создана "Генеральная схема размещения объектов электроэнергетики до 2020 года", одобренная Правительством РФ. (диаграмма 2)

Приоритетами Генеральной схемы в рамках установленных ориентиров долгосрочной государственной политики в сфере электроэнергетики являются:

ь опережающее развитие электроэнергетической отрасли, создание в ней экономически обоснованной структуры генерирующих мощностей и электросетевых объектов для надежного обеспечения потребителей страны электрической и тепловой энергией;

ь оптимизация топливного баланса электроэнергетики за счет максимально возможного использования потенциала развития атомных, гидравлических, а также использующих уголь тепловых электростанций и уменьшения в топливном балансе отрасли использования газа;

ь создание сетевой инфраструктуры, развивающейся опережающими темпами по сравнению с развитием электростанций и обеспечивающей полноценное участие энергокомпаний и потребителей в функционировании рынка электрической энергии и мощности, усиление межсистемных связей, гарантирующих надежность взаимных поставок электрической энергии и мощности между регионами России, а также возможность экспорта электрической энергии;

ь минимизация удельных расходов топлива на производство электрической и тепловой энергии путем внедрения современного высокоэкономичного оборудования, работающего на твердом и газообразном топливе;

ь снижение техногенного воздействия электростанций на окружающую среду путем эффективного использования топливно-энергетических ресурсов, оптимизации производственной структуры отрасли, технологического перевооружения и вывода из эксплуатации устаревшего оборудования, увеличения объема природоохранных мероприятий на электростанциях, реализации программ по развитию и использованию возобновляемых источников энергии.

По результатам мониторинга в Правительство Российской Федерации ежегодно представляется доклад о ходе реализации Генеральной схемы. Через несколько лет будет видно, насколько она эффективна и насколько реализуются её положения по использованию всех перспектив развития российской энергетики.

В перспективе Россия должна отказаться от строительства новых крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые ТЭЦ будут строиться на газе, и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС из-за дешевой, открытой добычи угля. Имеет перспективы использование геотермальной энергии. Районами, наиболее перспективными для широкого использования термальных вод являются Западная и Восточная Сибирь, а также Камчатка, Чукотка, Сахалин. В перспективе масштабы использования термальных вод будут неуклонно возрастать. Проводятся исследования по вовлечению неисчерпаемых источников энергии, таких как энергия Солнца, ветра, приливов и др., в хозяйственный оборот, что даст возможность обеспечить в стране экономию энергоресурсов, особенно минерального топлива.

Перспективы развития электроэнергетики

Стратегическими целями развития электроэнергетики в рассматриваемой перспективе являются:

­ надежное энергоснабжение экономики и населения страны электроэнергией;

­ сохранение целостности и развитие Единой энергетической системы страны, ее интеграция с другими энергообъединениями на Евразийском континенте;

­ повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе новых современных технологий;

­ снижение вредного воздействия на окружающую среду.

Исходя из прогнозируемых объемов спроса на электроэнергию при высоких темпах развития экономики (оптимистический и благоприятный варианты), суммарное производство электроэнергии может возрасти по сравнению с 2000 г. более, чем в 1,2 раза к 2010 г. (до 1070 млрд. кВт.ч) и в 1,6 раза к 2020 г. (до 1365 млрд. кВт.ч). При пониженных темпах развития экономики (умеренный вариант) производство электроэнергии составит, соответственно, 1015 и 1215 млрд. кВт.ч.

Обеспечение этих уровней электропотребления требует решения ряда проблем, которые носят системный характер:

­ ограничения по межсистемным перетокам мощности,

­ старение основного энергетического оборудования,

­ технологическая отсталость, нерациональная структура топливного баланса и др.

Остаются невостребованными энергетические мощности, Сибирских ГЭС и ТЭС: запертые мощности в этом регионе составляют порядка 7-10 млн. кВт. Поэтому одной из стратегических задач электроэнергетики является развитие межсистемных электропередач 500-1150 кВ для усиления надежности параллельной работы ОЭС Сибири с энергосистемами европейской части России по трассе Итат - Челябинск и с ОЭС Дальнего Востока (Иркутск - Зея - Хабаровск). Это позволит избежать дорогостоящих перевозок угля из Кузбасса и КАТЭКа за счет их использования на местных ТЭС с выдачей 5-6 млн. кВт на запад и 2-3 млн. кВт - на восток. Кроме того, использование маневренных возможностей ГЭС Ангаро-Енисейского каскада снимет напряженность с регулированием графика нагрузки в европейских районах.

Износ активной части фондов в электроэнергетике составляет в целом 60-65%, в т.ч. в сельских распределительных сетях - свыше 75%. Отечественное оборудование, составляющее техническую основу электроэнергетики, морально устарело, уступает современным требованиям и лучшим мировым изделиям. Поэтому необходимо не только поддержание работоспособности, но и существенное обновление ОПФ на базе новой техники и технологий производства и распределения электроэнергии и тепла.

Наличие в энергосистемах изношенного, выработавшего свой ресурс оборудования, доля которого уже превысила 15% всех мощностей, и отсутствие возможности его восстановления вводит электроэнергетику в зону повышенного риска, технологических отказов, аварий и, как следствие, - снижения надежности электроснабжения.

Нерациональная структура топливного баланса обусловлена проводившейся политикой цен на первичные энергоносители для электростанций. Цены на уголь в среднем в 1,5 раза превышают цены на газ. При таких условиях, учитывая большую капиталоемкость угольных электростанций, они становятся не конкурентоспособными и не могут развиваться, что может усугубить сложившуюся за последние годы ситуацию, когда в структуре топливного баланса тепловых электростанций доля выработки электроэнергии на газе превышала 60%.

Для развития единой национальной электрической сети как основного элемента Единой энергосистемы России и укрепления единства экономического пространства страны предусматривается сооружение ЛЭП в объеме, обеспечивающем устойчивое и надежное функционирование ЕЭС России и устранение технических ограничений, сдерживающих развитие конкурентного рынка электрической энергии и мощности.

В основу перспективного развития электрической сети ЕЭС России закладываются следующие основные принципы:

­ гибкость, позволяющая осуществлять поэтапное развитие и возможность приспосабливаться к изменению условий функционирования (рост нагрузки, развитие электростанций, реверс потоков мощности, реализация новых межгосударственных договоров по поставке электроэнергии);

­ развитие основной сети ЕЭС России путем постепенной «надстройки» линиями более высокого напряжения после достаточно полного охвата территории сетями предыдущего класса напряжения и исчерпания их возможностей, а также готовности этих сетей к работе с наложенными на них одиночными электропередачами более высокого напряжения;

­ сведение к минимуму числа дополнительных трансформаций 220/330, 330/500, 500/750 кВ в зонах совместного действия этих напряжений;

­ управляемость основной электрической сети путем использования средств принудительного потокораспределения - регулируемых шунтирующих реакторов, вставок постоянного тока, синхронных и статических компенсаторов, электромеханических преобразователей, фазоповоротных устройств и т.п.

Основу системообразующих сетей ЕЭС России в период до 2020 г. по-прежнему будут составлять линии электропередачи 500-750 кВ. Суммарный ввод ЛЭП напряжением 330 кВ и выше в период до 2020 г. должен составить в зависимости от варианта развития 25-35 тыс. км.

Развитие единой электрической сети страны будет осуществляться под контролем Федеральной сетевой компании и Системного оператора (с долей государства в обеих - 75% + 1 акция), при этом будет сохранена и обеспечена вертикаль диспетчерско-технологического управления.

Для обеспечения прогнозируемых уровней электро- и теплопотребления в оптимистическом и благоприятном вариантах вводы генерирующих мощностей на электростанциях России (с учетом замены и модернизации) на период 2003-2020 гг. оцениваются величиной порядка 177 млн. кВт, в том числе на ГЭС и ГАЭС - 11,2 млн. кВт, на АЭС - 23 млн. кВт, на ТЭС - 143 млн. кВт (из них ПТУ и ГТУ - 37 млн. кВт). В умеренном варианте вводы оцениваются величиной порядка 121 млн. кВт, в том числе на ГЭС и ГАЭС - 7 млн. кВт, на АЭС - 17 млн. кВт, на ТЭС - 97 млн. кВт (из них ПТУ и ГТУ - 31,5 млн. кВт).

Развитие электроэнергетики в рассматриваемый период времени будет исходить из следующих экономически обоснованных приоритетов территориального размещения генерирующих мощностей в отрасли:

­ в европейской части России - техническое перевооружение ТЭС на газе с замещением паросиловых турбин на парогазовые и максимальное развитие АЭС;

­ в Сибири - развитие ТЭС на угле и гидроэлектростанций;

­ на Дальнем Востоке - развитие ГЭС, ТЭЦ на газе в крупных городах и в отдельных районах - АЭС, АТЭЦ.

Основой электроэнергетики на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли сохранится на уровне 60-70%. Выработка электроэнергии на тепловых электростанциях к 2020 г. возрастет в 1,4 раза по сравнению с 2000 г.

Структура расходуемого топлива на ТЭС будет изменяться в сторону уменьшения доли газа к 2020 г. и, соответственно, увеличения доли угля, причем соотношение между газом и углем будет определяться складывающейся конъюнктурой цен на природный газ и уголь, а также политикой государства в использовании различных видов органического топлива для электроэнергетики.

Определяющим фактором является цена на природный газ, которая должна быть последовательно увеличена до уровня, обеспечивающего достаточные возможности для развития газовой отрасли. Для того чтобы электростанции на угле могли быть конкурентоспособными с электростанциями на газе на формирующемся рынке электроэнергии России, цена на газ должна быть в 1,6-2,0 раза выше цены на уголь. Такое соотношение цен позволит снизить долю газа в структуре потребления топлива ТЭС.

В результате величина среднего тарифа на электроэнергию по всем категориям потребителей оценивается на уровне 2020 г. в диапазоне 4,0-4,5 цент./кВт.ч. Необходимо ликвидировать перекрестное субсидирование и обеспечить дифференциацию тарифов в зависимости от суточного и сезонного графиков покрытия нагрузки, как это принято в мировой практике, так как затраты на производство электроэнергии от дорогих пиковых генерирующих мощностей в несколько раз превышают затраты на производство от базовых мощностей АЭС и ТЭЦ. Кроме того, предусматривается введение системы скидок энергоемким потребителям.

Сценарии развития теплоэнергетики, связанные с возможностью радикального изменения условий топливообеспечения тепловых электростанций в европейских районах страны, ужесточение экологических требований, преодоление к 2010 г. тенденции превышения темпов нарастания объемов оборудования электростанций, выработавших свой парковый ресурс, над темпами вывода его из работы и обновления требуют скорейшего внедрения достижений НТП и новых технологий в электроэнергетике.

Для электростанций, работающих на газе, такими технологиями являются: парогазовый цикл, газотурбинные надстройки паросиловых блоков и газовые турбины с утилизацией тепла. На электростанциях, работающих на твердом топливе, - экологически чистые технологии сжигания угля в циркулирующем кипящем слое, а позже - газификация угля с использованием генераторного газа в парогазовых установках. Новые угольные ТЭС в крупных городах, районах концентрированного сосредоточения населения и сельскохозяйственных регионах должны быть оснащены установками сероочистки.

Переход от паротурбинных ТЭС на газе к парогазовым ТЭС обеспечит повышение КПД установок до 50%, а в перспективе - до 60% и более. Вторым направлением повышения тепловой экономичности ТЭС является строительство новых угольных блоков на суперкритические параметры пара с КПД 45-46%. Это позволит существенно снизить удельный расход топлива на выработку электроэнергии на ТЭС на твердом топливе с 360 г. у.т./кВт.ч в 2000 г. до 310 г. у.т./кВт.ч в 2010 г. и до 280 г. у.т./кВт.ч в 2020 г.

Важнейшую роль в снижении расхода топлива, используемого для производства электрической и тепловой энергии в электроэнергетическом секторе, будет играть теплофикация, то есть выработка электроэнергии на ТЭС с утилизацией теплоты, отработавшей в паросиловом, газотурбинном или комбинированном парогазовом цикле.

Важным направлением в электроэнергетике в современных условиях является развитие распределенной генерации на базе строительства электростанций небольшой мощности, в первую очередь небольших ТЭЦ с ПТУ, ГТУ и на других современных технологиях.

Газотурбинные, газопоршневые и парогазовые ТЭЦ, ориентированные на обслуживание потребителей с тепловыми нагрузками малой и средней концентрации (до 10-50 Гкал/ч), получившие название когенерационных, будут обеспечивать в первую очередь децентрализованный сектор теплоснабжения. Кроме этого, часть районных отопительных и промышленных котельных будет реконструирована (где это возможно и экономически оправдано) в ТЭЦ малой мощности.

В результате в процессе развития теплофикации и когенерации будет возрастать доля независимых от АО-энерго производителей электроэнергии и тепла, увеличится конкуренция производителей электрической и тепловой энергии.

Для выполнения инновационной программы отрасли необходимо осуществить комплекс научных исследований и разработок по следующим направлениям:

­ расширение ресурсной базы электроэнергетики и повышение региональной обеспеченности топливом за счет освоения эффективного экологически чистого сжигания канско-ачинских и низкосортных углей восточных районов России в котлах паротрубных энергоблоков на суперкритические параметры пара, в том числе с «кольцевой» топкой, в расплаве шлака, в топках с циркулирующим кипящим слоем и под давлением;

­ повышение эффективности защиты окружающей среды на основе комплексных систем газоочистки и золоулавливания на энергоблоках;

­ повышение эффективности парогазового цикла за счет выбора схемы утилизации тепла;

­ создание и освоение производства энергетических установок нового поколения на базе твердооксидных топливных элементов для централизованного энергоснабжения, исследование возможности применения в этих целях топливных элементов других типов;

­ создание и внедрение в эксплуатацию надежного электротехнического коммутационного оборудования с элегазовой и вакуумной изоляцией;

­ развитие межсистемных электрических передач с повышенной пропускной способностью;

­ развитие гибких электрических передач;

­ внедрение нового поколения трансформаторного оборудования, систем защиты от перенапряжений и микропроцессорных систем РЗ и ПАА, оптоволоконных систем связи;

­ создание и внедрение электротехнического оборудования, включая преобразовательные агрегаты, для частотно-регулируемого электропривода различного назначения;

­ повышение надежности теплоснабжения на базе повышения долговечности и коррозионной стойкости труб тепловых сетей с пенополиуретановой изоляцией.

Гидроресурсы России по своему потенциалу сопоставимы с современными объемами выработки электроэнергии всеми электростанциями страны, однако используются они всего на 15%. Учитывая рост затрат на добычу органического топлива, и, как следствие, ожидаемое значительное увеличение цен на него, необходимо обеспечить максимально возможное использование и развитие гидроэнергетики, являющейся экологически чистым возобновляемым источником электроэнергии. С учетом этого выработка электроэнергии на ГЭС в оптимистическом и благоприятном вариантах возрастет до 180 млрд. кВт.ч в 2010 г. и до 215 млрд. кВт.ч в 2020 г. с дальнейшим увеличением до 350 млрд. кВт.ч за счет сооружения новых ГЭС.

Гидроэнергетика будет развиваться в основном в Сибири и на Дальнем Востоке, обеспечивая практически базисный режим работы тепловым электростанциям этих районов. В европейских районах, где практически исчерпан экономически эффективный потенциал гидроэнергии, получит развитие строительство малых ГЭС, продолжится сооружение некрупных пиковых ГЭС, преимущественно на Северном Кавказе.

Для обеспечения надежного функционирования ЕЭС России и покрытия неравномерного графика потребления электроэнергии в условиях увеличения доли базисных АЭС в европейской части страны необходимо ускорить сооружение ГАЭС.

Развитие сетевого хозяйства, обновление мощности и обеспечение прироста потребности в генерирующей мощности требует кратного роста инвестиций в отрасли.

При этом источниками инвестиций будут:

­ для тепловых генерирующих компаний - собственные средства компаний (амортизационные отчисления и прибыль), заемный и акционерный капитал;

­ для гидрогенерирующих компаний с государственным участием - наряду с указанными источниками возможно создание и использование целевых инвестиционных фондов, формируемых за счет прибыли ГЭС;

­ для федеральной сетевой компании и системного оператора - централизованные инвестиционные средства, включаемые в тарифы на передачу и системные услуги.

Необходимо осуществить модернизацию коммунальной энергетики, в том числе за счет привлечения частного капитала в эту потенциально привлекательную в инвестиционном отношении сферу хозяйственной деятельности на основе реформирования и модернизации всего жилищно-коммунального комплекса Российской Федерации с преобразованием унитарных муниципальных предприятий, обеспечивающих электроснабжение населения и коммунальной сферы городов, в открытые акционерные общества и последующей их интеграцией с предприятиями АО-энерго, включая использование концессионных, арендных и других механизмов управления объектами коммунальной инфраструктуры.

Для привлечения крупномасштабных инвестиций в электроэнергетику требуется коренное реформирование отрасли и соответствующая государственная тарифная политика.

В соответствии с законом «Об электроэнергетике» реформирование электроэнергетики намечено осуществлять на следующих принципах:

­ отнесение передачи, распределения электрической энергии и диспетчеризации к подлежащим государственному регулированию исключительным видам деятельности, осуществление которых возможно только на основании специальных разрешений (лицензий);

­ демонополизация и развитие конкуренции в сфере производства, сбыта и оказания услуг (ремонт, наладка, проектирование и т.д.);

­ обеспечение всем производителям и потребителям электроэнергии равного доступа к инфраструктуре рынка;

­ единство стандартов безопасности, технических норм и правил, действующих в электроэнергетической отрасли;

­ обеспечение финансовой прозрачности рынков электроэнергии и деятельности организаций регулируемых секторов электроэнергетики;

­ обеспечение прав инвесторов, кредиторов и акционеров при проведении структурных преобразований.

Основной задачей проводимых реформ в электроэнергетике является развитие конкуренции в потенциально конкурентных сферах деятельности - генерация и сбыт электроэнергии в тех районах, где это технологически и экономически реализуемо, что в свою очередь создаст условия более эффективной хозяйственной деятельности в сфере генерации, передачи и сбыта электроэнергии. При этом, безусловно, должна быть обеспечена устойчивая и стабильная работа Единой энергетической системы Российской Федерации, надежное электро- и теплоснабжение регионов Российской Федерации.

Основываясь на принципах экономической целесообразности при формировании управленческой стратегии в области электроэнергетики, а также на безусловном исполнении принципов энергетической безопасности Российской Федерации, государство будет поощрять разумное сочетание экспорта / импорта электроэнергии. Импорт электроэнергии на первом этапе реформирования электроэнергетики будет считаться оправданным в тех случаях, когда он будет способствовать недопущению скачкообразного роста тарифов на внутреннем рынке РФ, а также преодолению дефицита в отдельных сегментах оптового рынка на период реконструкции существующих и строительства новых генерирующих мощностей.

Список литературы

электроэнергетика топливный прогнозирование тариф

1. Ф. Котлер «Маркетинг и менеджмент», Питер, 2004

2. Хунгуреева И.П., Шабыкова Н.Э., Унгаева И.Ю. Экономика предприятия: Учебное пособие. - Улан-Удэ, Изд-во ВСГТУ, 2004.

3. Авдашева «теория отраслевых рынков»

4. Журнал «Бизнес и закон» №10/2008

5. Барышев А.В. «Монополизм и антимонопольная политика», 1994.



Похожие публикации