Медицинский портал. Анализы. Болезни. Состав. Цвет и запах

Что такое фиш анализ при раке молочной железы? Что он показывает? Фиш анализ при раке молочной железы Метод fish и его применение в медицине

Во всех без исключения случаях образование и рост связано с деятельностью гена типа HER2. Именно он отвечает за то, какое количество белков будет выделено женскому организму для развития тканей молочной железы. Когда перерождаются первые здоровые клетки в злокачественные, в рецепторы гена поступает информация о том, что требуется дополнительное деление клеточного материала.

Ген запускает программу наращивания дополнительных тканей внутри груди, хотя на самом деле этот клеточный материал будет использован опухолью для своего роста и развития. Так, карцинома, по сути, обманывает организм, и заставляет его питать рак за счет своих же ресурсов.

Задача фиш анализа при раке молочной железы, как раз и заключается в том, чтобы выявить неправильную работу гена HER2, и предпринять соответствующие меры реагирования в части назначения адекватного медицинского лечения.

Если своевременно не провести фиш тест при раке молочной железы, то даже в случае применения в процессе лечения тех или иных препаратов - это может привести к тому, что опухоль и дальше будет агрессивно развиваться, охватывать все новые ткани груди. Это так званые, последствия не правильно назначенной терапии из-за отсутствия объективных данных о функционировании HER2 гена.

В процессе прохождения фиш анализа врачом вводится в кровь пациентки специальные вещества, содержащие окрашивающие элементы, которые способны визуаллизировать картину хромосомных нарушений. Таким образом, доктор способен наглядно увидеть, а в дальнейшем изучить генетические аномалии в геноме женщины, которые привели к развитию онкологии груди.

Если отклонения в работе гена HER2 подтверждаются, то назначается соответствующее лечение. Если же нет, то врач с помощью других анализов устанавливает иную причину развития РМЖ.

Еще одним важным достоинством фиш анализа является то, что уже через пару дней пациент получает комплексный отчет о генетической предрасположенности к развитию того или иного онкологического заболевания. С помощью данного медицинского тестирования можно одновременно диагностировать патологию не только молочной железы, но и всех органов брюшной полости.

Информативное видео

Инвазивные методы пренатальной диагностики позволяют не только заглянуть в будущее и достоверно предсказать ожидают ли еще неродившегося малыша заболевания, связанные с внутриутробными пороками развития, но и выяснить характер и причины врожденных патологий.

Однако любая информация имеет ценность лишь тогда, когда является своевременной. Если речь идет о состоянии развития плода, скорость получения результатов анализов приобретает жизненно-важное значение.

Поэтому, FISH-метод, позволяющий оценить наличие у эмбриона наиболее часто встречающихся аномалий развития в максимально короткие сроки, весьма востребован в генетической диагностике.

FISH– аббревиатура, в расшифровке которой кроется суть технологии выявления хромосомных аномалий – fluorescence in situ hybridization – флюоресцентной гибридизации в «домашней» среде.

Этот прием, предложенный в конце 70-х годов прошлого века Дж. Голлом и М.-Л. Пардью, основан на возможности восстановления последовательности расположения фрагментов нуклеиновых кислот (ДНК или РНК) после их денатурации.

Авторы разработали метод, позволяющий с помощью гибридизации in situ искусственно созданных меченых ДНК-проб (зондов) и цитогенетического материала, взятого на анализ, выявить количественные и качественные отклонения интересующих хромосом.

В конце прошлого века, после успешного применения для окрашивания ДНК-зондов флуоресцентных красителей, FISH-метод получил свое название и с тех пор интенсивно совершенствуется и вариатизируется.

Современные методики FISH-анализа стремятся к тому, чтобы обеспечить возможность получения максимально полной информации для анализа забранного генетического материала за одну процедуру гибридизации.

Дело в том, что единожды после гибридизации можно оценить лишь ограниченное количество хромосом одного и того же цитогенетического материала. Способность же к повторной гибридизации ДНК-цепочек снижается от раза к разу.

Поэтому, на данный момент в генетической диагностике наиболее часто метод гибридизации in situ применяется для быстрого ответа на вопросы об имеющихся, наиболее распространенных анеуплоидий по 21, 13, 18 хромосомах, а также по половым хромосомам X, Y.

Для проведения анализа FISH-методом подходят любые тканевые или клеточные образцы.

В пренатальной диагностике, это могут быть образцы крови, эякулята, или .

Быстрота получения результатов обеспечивается тем, что клетки, полученные из забранного на анализ материала, не нужно культивировать в питательных средах, добиваясь их деления до нужного количества, как при классическом способе кариотипирования.

Отобранный материал проходит специальную подготовку для получения концентрированной чистой клеточной суспензии. Далее проводят процесс денатурации ДНК-пробы и нативных ДНК исследуемого образца до одноцепочечного состояния и процесс гибридизации, во время которого окрашенные ДНК-зонды инкубируются с ДНК образца.

Таким образом, визуализируются искомые (окрашенные) хромосомы в клетке, оценивается их количество, строение генетических структур и т.п. Рассмотреть светящиеся цепочки ДНК позволяет окуляр особого флуоресцентного микроскопа.

В настоящее время FISH-метод широко используется в диагностических целях для выявления генетических заболеваний, хромосомных аберраций в репродуктивной медицине, онкологии, гематологии, в биологической дозиметрии и т.п.

Как применяют FISH-диагностику плода?

В сфере репродуктивной медицины FISH-метод, как один из приемов молекулярной цитогенетической диагностики, используется на всех этапах.

  • парой.

Для определения кариотипа будущих родителей – проводится единожды, так как геном человека неизменен в течение всей жизни.

Кариотипирование пары перед зачатием ребенка поможет выявить являются ли родители носителями генетических патологий, передающихся по наследству, в том числе скрытых. А также общее состояние генома будущих мамы и папы, которое может повлиять на успешность зачатия малыша и вынашивания беременности.

Диагностика FISH-методом в данном случае зачастую выступает как дополнительное обследование к классическому кариотипированию, при выявлении хромосомных патологий в исследуемом материале (венозной крови родителей), если есть подозрение на мозаицизм.

Дообследование FISH-методом позволит достоверно подтвердить или опровергнуть наличие подозреваемой аномалии в клетках будущего родителя.

  • Исследование эякулята.

Показано при трудностях с репродукцией в паре по «мужскому фактору». Анализ спермы FISH-методом позволит оценить уровень аномальных по хромосомному набору сперматозоидов, а также определить является ли мужчина носителем генетических заболеваний, сцепленных с полом.

Если пара в дальнейшем прибегнет к зачатию с помощью ЭКО, FISH-анализ эякулята позволит отобрать наиболее качественные сперматозоиды для оплодотворения яйцеклетки.

  • При ЭКО.

Для предимплантационной генетической диагностики (ПГД). По результатам исследований кариотипа родителей определяются возможные хромосомные, генетические абберации, которые могут быть переданы эмбриону.

Благодаря возможностям FISH-диагностики, исследование генетического здоровья образовавшихся эмбрионов можно осуществить в считанные часы до переноса в полость матки, чтобы обеспечить наступление беременности заведомо здоровым плодом.

Кроме того, возможности ПГД позволяют определить половую принадлежность эмбрионов, а, следовательно, «заказать» пол будущего ребенка, если это необходимо.

  • В период вынашивания беременности.

В пренатальной диагностике: анализ плодовых клеток, полученных с помощью биопсии ворсин хориона, амниоцентеза или кордоцентеза, методом FISH медицинские центры обычно предлагают в дополнение к классическому генетическому исследованию клеток плода (кариотипированию).

Этот метод незаменим, когда необходимо быстрое получение ответа о наличии у плода наиболее распространенных хромосомных пороков: трисомии по 21, 18, 13 хромосомах, аббераций в хромосомах X и Y, иногда также анеуплоидий по 14 (или 17),15, 16 хромосомам.

Достоинства анализа FISH-методом

Проведение генетического анализа FISH-методом, хоть и остается на сегодняшний день вспомогательным методом диагностики хромосомных патологий, однако целесообразность его проведения обуславливают неоспоримые преимущества:

  • скорость получения результатов, касающиеся тестируемых хромосом – в течение нескольких часов – не более 72-х.

Это может быть важно, если от диагноза генетиков зависит судьба беременности;

  • высокая чувствительность и достоверность метода FISH–успешное проведение анализа возможно на ничтожно малом количестве биоматериала – достаточно одной клетки, погрешность результатов при этом, не более 0,5%.

Это может быть важно при ограниченном количестве клеток в исходном образце, например, при плохом их делении.

  • возможность проведения диагностики FISH-методом на любом сроке беременности (с 7-ой недели) и по любому биологическому образцу: фрагменты хориона, амниотическая жидкость, плодная кровь и т.п.

Где можно сделать диагностику FISH-методом

В Москве FISH-метод для пренатальной диагностики хромосомных отклонений плода применяют в следующих медицинских центрах:

Как правило, клиники предлагают услугу FISH-диагностики в рамках полного кариотипирования плода путем инвазивного вмешательства за дополнительную плату. И, как правило, будущие родители согласны доплатить, ведь благодаря FISH-методу уже через пару суток можно узнать о своем малыше самое главное

Техника FISH — Fluorescent in situ hybridization, разработана в середине 1980-х годов и используется для детекции присутствия или отсутствия специфических ДНК-последовательностей на хромосомах, а также альфа-сателлита ДНК, локализованного на центромере хромосомы 6, CEP6(6р11.1-q11.1).

Это дало существенный сдвиг в диагностике онкологических заболеваний меланоцитарного генеза произошел в связи с обнаружением опухолевых антигенов. На фоне злокачественной определяется мутация в трех антигенах: CDK2NA (9p21), CDK4 (12q14) и CMM1(1p). В связи с этим возможность объективной дифференциальной диагностики, основанной на определении генетических характеристик меланоцитарных опухолей кожи, имеет большое значение в ранней диагностике меланомы и ее предшественников.В ядре с нормальным набором исследуемых генов и хромосомы 6 наблюдается два гена RREB1, окрашенных красным, два гена MYB, окрашенных желтым, два гена CCND1, выделенных зеленым цветом, и две центромеры хромосомы 6, обозначенные голубым цветом. С диагностической целью используются флуоресцентные пробы.

Оценка результатов реакции: проводится подсчет количества красного, желтого, зеленого и голубого сигналов в 30 ядрах каждого образца, выявляются четыре параметра различных вариантов генетических нарушений, при которых образец генетически соответствует меланоме. Например, образец соответствует меланоме, если среднее количество гена CCND1 на ядро ≥2,5. По этому же принципу производится оценка копийности других генов. Препарат считается FISH-положительным, если выполняется хотя бы одно из четырех условий. Образцы, в которых все четыре параметра ниже пограничных значений, расцениваются как FISH-отрицательные.

Определение специфических ДНК-последовательностей на хромосомах проводят на срезах биоптатов или операционного материала. В практическом исполнении FISH-реакция выглядит следующим образом: исследуемый материал, содержащий ДНК в ядрах меланоцитов, подвергается обработке для частичного разрушения ее молекулы с целью разрыва двухцепочной структуры и тем самым облегчения доступа к искомому участку гена. Пробы классифицируются по месту присоединения к молекуле ДНК. Материалом для FISH-реакции в клинической практике служат парафиновые срезы тканей, мазки и отпечатки.

FISH-реакция позволяет находить изменения, произошедшие в молекуле ДНК в результате увеличения числа копий гена, потери гена, изменения числа хромосом и качественных изменений — перемещения локусов генов как в одной и той же хромосоме, так и между двумя хромосомами.

Для обработки полученных данных при применении FISH-реакции и изучения зависимости между копийностью генов трех исследумых групп используется коэффициент корреляции Спирмена.

Для меланомы характерно увеличение копийности по сравнению с невусом и диспластическим невусом.

Простой невус по сравнению с диспластическим невусом имеет меньше нарушений в копийности (т.е. больше нормальных копийностей).

Для построения решающих правил, позволяющих предсказать, относится ли образец к тому или иному классу (дифференциальная диагностика простых и диспластических невусов), используется математический аппарат «деревьев решений» (decision trees). Данный подход хорошо зарекомендовал себя на практике, а результаты применения указанного метода (в отличие от многих других методов, например нейронных сетей) могут быть наглядно интерпретированы для построения решающих правил для дифференциации простого, диспластического невусов и меланомы. Исходными данными во всех случаях являлись копийности четырех генов.

Задачу по построению решающего правила для дифференциальной диагностики разбивают на несколько этапов. На первом этапе дифференцируют меланому и невус, не учитывая тип невуса. На следующем этапе строят решающее правило для разделения простого и диспластического невусов. Наконец на последнем этапе возможно построение «дерева решений» для определения степени дисплазии диспластического невуса.

Подобное разделение задачи классификации невусов на подзадачи позволяет достичь высокой точности предсказаний на каждом из этапов. Входными данными для построения «дерева решений» служат данные о копийности четырех генов для пациентов с диагнозом «меланома» и пациентов с диагнозом «не меланома» (пациенты с различными типами невуса — простым и диспластическим). Для каждого пациента имеются данные о копийности генов для 30 клеток.

Таким образом, разделение задачи предсказания диагноза на несколько этапов позволяет строить высокоточные решающие правила не только для дифференцирования между меланомой и невусами, но и для определения типа невусов и предсказания степени дисплазии для диспластического невуса. Построенные «деревья решений» являются наглядным способом предсказания диагноза по сведениям о копийностях генов и легко могут быть использованы в клинической практике при дифференциации доброкачественных, предзлокачественных и злокачественных меланоцитарных новообразований кожи. Предлагаемый дополнительный метод дифференциальной диагностики особенно важен при иссечении гигантских врожденных пигментных невусов и диспластических невусов у пациентов детского возраста, поскольку при обращении таких пациентов в медицинские учреждения отмечается высокий процент диагностических ошибок. Результаты использования описанного метода высокоэффективны, целесообразно его использовать при диагностике пигментных опухолей кожи, особенно у пациентов с FAMM-cиндромом.

Определение HER-2 статуса опухоли методом FISH - исследование предрасположенности к развитию опухоли и подбор своевременного адекватного лечения при раке молочной железы (РМЖ) или раке желудка (РЖ).

HER-2 (HER-2/neu) - human epidermal growth factor receptor-2 - это белок, который может влиять на рост раковых клеток. Он создается специальным геном, который называется ген HER-2/neu. HER-2 является рецептором для определённого фактора роста, который называется человеческим эпидермальным фактором роста, естественным образом существующим у человека. Когда человеческий эпидермальный фактор роста прикрепляется к рецепторам HER-2 на раковых клетках груди, он может стимулировать рост и деление этих клеток. В здоровой ткани HER-2 передаёт сигналы, регулирующие пролиферацию и выживаемость клеток, но гиперэкспрессия HER-2 может обусловить злокачественную трансформацию клеток.

Гиперэкспрессия HER-2 при некоторых подтипах РМЖ ведёт к усилению пролиферации и ангиогенеза, нарушению регуляции апоптоза (генетически запрограммированного самоуничтожения клеток). Показано, что при раке молочной железы гиперэкспрессия этого рецептора в ткани опухоли ассоциирована с более агрессивным течением болезни, повышенным метастатическим потенциалом опухоли и менее благоприятным прогнозом. Открытие связи гиперэкспрессии HER-2 с неблагоприятным прогнозом РМЖ привело к поиску таких подходов к лечению, которые направлены на специфическое блокирование онкогена HER-2/neu (таргетная анти-HER2-терапия).

Рак молочной железы (РМЖ) - злокачественная опухоль железистой ткани молочной железы. РЖМ занимает первое место среди всех злокачественных заболеваний у женщин.

В зависимости от наличия биологических маркёров опухоли - экспрессии гормональных рецепторов (эстрогена и/или прогестерона), экспрессии HER-2 - выделяют гормон-рецептор-положительный, HER-2-положительный и тройной негативный РМЖ.

HER-2/neu-положительные (HER-2+) типы рака молочной железы отличаются высокой экспрессией белка HER-2/neu.
HER=2/neu-негативные (HER-2-) типы рака молочной железы отличаются низкой экспрессией или отсутствием белка HER-2/neu.
Считается, что у одной из пяти женщин с раком груди опухоль является HER-2-положительной. Большинство раковых опухолей молочной железы являются гормонально-зависимыми: эстрогены и прогестерон оказывают на них стимулирующий эффект (пролиферативный и неопластический). При HER-2-положительном раке молочной железы на поверхности опухолевых клеток присутствует избыток HER-2-рецепторов. Данное явление носит название «положительный HER-2-статус» и диагностируется у 15–20% женщин, страдающих РМЖ.

HER-2 - рецептор эпидермального фактора роста человека 2-го типа, который присутствует в тканях и в норме, участвуя в регуляции деления и дифференцировки клеток. Его избыток на поверхности опухолевых клеток (гиперэкспрессия) предопределяет быстрый неконтролируемый рост новообразования, высокий риск метастазирования, низкую эффективность некоторых видов лечения. HER-2-положительный РМЖ является особенно агрессивной формой данного заболевания, поэтому точное определение HER-2-статуса имеет ключевое значение для выбора тактики лечения.

Рак желудка (РЖ) - злокачественная опухоль, происходящая из эпителия слизистой оболочки желудка.

РЖ занимает 4-е место в структуре онкологической заболеваемости и 2-е место в структуре онкологической смертности в мире. Заболеваемость РЖ у мужчин в 2 раза выше, чем у женщин. Россия относится к регионам с высоким уровнем заболеваемости РЖ и смертности от данного заболевания. Диагностика РЖ на ранних стадиях затруднена из-за длительного бессимптомного течения заболевания. Часто РЖ выявляют на поздних стадиях, когда 5-летняя выживаемость не превышает 5–10%, а единственным методом лечения остаётся химиотерапия.

Основным методом лечения РЖ является хирургический. Однако у большинства пациентов на момент постановки диагноза определяется распространённый опухолевый процесс, что делает невозможным выполнение радикальной операции и требует проведения системной лекарственной терапии. Проведение химиотерапии статистически достоверно увеличивает общую выживаемость больных метастатическим РЖ, улучшая качество их жизни.

Онкоген HER-2 (erbB-2) был первоначально идентифицирован в опухолях молочной железы. Амплификация и гиперэкспрессия данного гена является относительно специфическим событием для карцином молочной железы и практически не встречается в опухолях других локализаций. Рак желудка представляется одним из немногих исключений: активация HER-2 отмечается примерно в 10–15% злокачественных новообразований этого органа и коррелирует с агрессивным течением заболевания.

Гиперэкспрессия HER-2 является фактором неблагоприятного прогноза. По данным разных исследований, амплификация гена HER-2 у больных РЖ коррелирует с низкими показателями общей выживаемости.

Для оценки HER-2-статуса при РЖ и РМЖ используют FISH метод.

FISH - исследования позволяет определять качественные и количественные изменения хромосом для диагностики злокачественных заболеваний крови и солидных опухолей.

Сегодня во всём мире широко применяются исследования методом FISH.

Метод FISH (флуоресцентная гибридизация in situ) - изучение числа HER-2/neu-генов внутри раковых клеток.

Показания:

  • рак молочной железы - в целях прогноза и подбора терапии;
  • рак желудка - в целях прогноза и подбора терапии.
Подготовка
Определяется лечащим врачом.

Необходимы гистологический протокол и иммуногистохимический протокол, стекло ИГХ.

Интерпретация результатов
Результаты FISH-теста выражаются следующим образом:

1. Положительный (повышенное содержание, есть амплификация гена HER-2):

  • HER-2-положительный рак молочной железы;
2. Негативный (нет амплификации гена HER-2):
  • HER-2-отрицательный рак молочной железы.

Современный метод цитогенетического анализа, позволяющий определять качественные и количественные изменения хромосом (в том числе транслокации и микроделеции) и используемый для дифференциальной диагностики злокачественных заболеваний крови и солидных опухолей.

Синонимы русские

Флуоресцентная гибридизация in situ

FISH-анализ

Синонимы английские

Fluorescence in-situ hybridization

Метод исследования

Флуоресцентная гибридизация in situ.

Какой биоматериал можно использовать для исследования?

Образец ткани, образец ткани в парафиновом блоке.

Как правильно подготовиться к исследованию?

Подготовки не требуется.

Общая информация об исследовании

Флуоресцентная гибридизация in situ (FISH, от англ. fluorescence in - situ hybridization) – это один из самых современных методов диагностики хромосомных аномалий. Он основан на использовании ДНК-проб, меченных флуоресцентной меткой. ДНК-пробы представляют собой специально синтезированные фрагменты ДНК, последовательность которых комплементарна последовательности ДНК исследуемых аберрантных хромосом. Таким образом, ДНК-пробы различаются по составу: для определения разных хромосомных аномалий используются разные, специфические ДНК-пробы. ДНК-пробы также различаются по размеру: одни могут быть направлены к целой хромосоме, другие – к конкретному локусу.

В ходе процесса гибридизации при наличии в исследуемом образце аберрантных хромосом происходит их связывание с ДНК-пробой, которое при исследовании с помощью флуоресцентного микроскопа определяется как флуоресцентный сигнал (положительный результат FISH-теста). При отсутствии аберрантных хромосом несвязанные ДНК-пробы в ходе реакции "отмываются", что при исследовании с помощью флуоресцентного микроскопа определяется как отсутствие флуоресцентного сигнала (отрицательный результат FISH-теста). Метод позволяет оценить не только наличие флуоресцентного сигнала, но и его интенсивность и локализацию. Таким образом, FISH-тест – это не только качественный, но и количественный метод.

FISH-тест обладает рядом преимуществ по сравнению с другими методами цитогенетики. В первую очередь, исследование FISH может быть применено как к метафазным, так и к интерфазным ядрам, то есть к неделящимся клеткам. Это основное преимущество FISH по сравнению с классическими способами кариотипирования (например, окрашиванием хромосом по Романовскому-Гимзе), которые применяются только к метафазным ядрам. Благодаря этому исследование FISH является более точным методом для определения хромосомных аномалий в тканях с низкой пролиферативной активностью, в том числе в солидных опухолях.

Так как в FISH-тесте используется стабильная ДНК интерфазных ядер, для исследования могут быть использованы самые различные биоматериалы – аспираты тонкоугольной аспирационной биопсии, мазки, аспираты костного мозга, биоптаты и, что немаловажно, сохраненные фрагменты ткани, например гистологические блоки. Так, например, FISH-тест может быть с успехом выполнен на повторных препаратах, полученных из гистологического блока биоптата молочной железы при подтверждении диагноза "аденокарцинома молочной железы" и необходимости определения HER2/neu-статуса опухоли. Следует особо подчеркнуть, что в данный момент исследование FISH рекомендовано в качестве подтверждающего теста при получении неопределенного результата иммуногистохимического исследования опухоли на онкомаркер HER2/neu(ИГХ 2+).

Другим преимуществом FISH является его способность определять микроделеции, которые не выявляются с помощью классического кариотипирования или ПЦР. Это имеет особое значение при подозрении на синдром Ди Джорджи и велокардиофациальный синдром.

FISH-тест широко используется в дифференциальной диагностике злокачественных заболеваний, в первую очередь в онкогематологии. Хромосомные аномалии в сочетании с клинической картиной и данными иммуногистохимического исследования являются основой классификации, определения тактики лечения и прогноза лимфо- и миелопролиферативнх заболеваний. Классическими примерами являются хронический миелолейкоз – t (9;22), острый промиелоцитарный лейкоз – t (15;17), хронический лимфолейкоз – трисомия 12 и другие. Что касается солидных опухолей, наиболее часто FISH-исследование применяется при диагностике рака молочной железы, мочевого пузыря, толстой кишки, нейробластомы, ретинобластомы и других.

Исследование FISH также может быть использовано в пренатальной и преимплантационной диагностике.

FISH-тест часто проводят в сочетании с другими методами молекулярной и цитогенетической диагностики. Результат этого исследования оценивают в комплексе с результатами дополнительных лабораторных и инструментальных данных.

Для чего используется исследование?

  • Для дифференциальной диагностики злокачественных заболеваний (крови и солидных органов).

Когда назначается исследование?

  • При подозрении на наличие злокачественного заболевания крови или солидных опухолей, тактика лечения и прогноз которых зависит от хромосомного состава опухолевого клона.

Что означают результаты?

Положительный результат:

  • Наличие в исследуемом образце аберрантных хромосом.

Отрицательный результат:

  • Отсутствие в исследуемом образце аберрантных хромосом.

Что может влиять на результат?

  • Количество аберрантных хромосом.

  • Иммуногистохимическое исследование клинического материала (с использованием 1 антитела)
  • Иммуногистохимическое исследование клинического материала (с использованием 4 и более антител)
  • Определение HER2 статуса опухоли методом FISH
  • Определение HER2 статуса опухоли методом СISH

Кто назначает исследование?

Онколог, педиатр, акушер-гинеколог, врач-генетик.

Литература

  • Wan TS, Ma ES. Molecular cytogenetics: an indispensable tool for cancer diagnosis. Anticancer Res. 2005 Jul-Aug;25(4):2979-83.
  • Kolialexi A, Tsangaris GT, Kitsiou S, Kanavakis E, Mavrou A. Impact of cytogenetic and molecular cytogenetic studies on hematologic malignancies. Chang Gung Med J. 2012 Mar-Apr;35(2):96-110.
  • Mühlmann M. Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res. 2002 Jun 30;1(2):117-27.


Похожие публикации