Медицинский портал. Анализы. Болезни. Состав. Цвет и запах

Презентация на тему: Пар.22 В клетках каких организмов происходит спиртовое брожение? В большинстве. Спиртовое брожение – магия превращения сахара в этиловый спирт Спиртовое брожение происходит в клетках

При спиртовом брожении помимо основных продуктов - спир­та и СО 2 , из сахаров возникает множество других, так называе­мых вторичных продуктов брожения. Из 100 г С 6 Н 12 О 6 образует­ся 48,4 г этилового спирта, 46,6 г диоксида углерода, 3,3 г глице­рина, 0,5 г янтарной кислоты и 1,2 г смеси молочной кислоты, ацетальдегида, ацетоина и других органических соединений.

Наряду с этим дрожжевые клетки в период размножения и логарифмического роста потребляют из виноградного сусла ами­нокислоты, необходимые для построения собственных белков. При этом образуются побочные продукты брожения, главным об­разом высшие спирты.

В современной схеме спиртового брожения насчитывается 10-12 фаз биохимических превращений гексоз под действием комплекса ферментов дрожжей. В упрощенном виде можно вы­делить три этапа спиртового брожения.

I этап - фосфорилирование и распад гексоз. На этом этапе протекает несколько реакций, в результате которых гексоза пре­вращается в триозофосфат:

АТФ → АДФ

Главную роль в передаче энергии в биохимических реакциях играют АТФ (аденозинтрифосфат) и АДФ (аденозиндифосфат). Они входят в состав ферментов, аккумулируют большое коли­чество энергии, необходимой для осуществления жизненных про­цессов, и представляют собой аденозин - составную часть ну­клеиновых кислот - с остатками фосфорной кислоты. Вначале образуется адениловая кислота (монофосфат аденозина, или аденозинмонофосфат - АМФ):

Если обозначить аденозин буквой А, то строение АТФ может быть представлено в следующем виде:

А-О-Р-О ~ Р - О ~ Р- ОН

Значком с ~ обозначены так называемые макроэргические фосфатные связи, чрезвычайно богатые энергией, которая выде­ляется при отщеплении остатков фосфорной кислоты. Передача энергии с АТФ на АДФ может быть представлена следующей схе­мой:

Выделяющаяся энергия используется дрожжевыми клетками для обеспечения жизненных функций, в частности их размноже­ния. Первым актом выделения энергии и является образование фосфорных эфиров гексоз - фосфорилирование их. Присоедине­ние к гексозам остатка фосфорной кислоты от АТФ происходит под действием фермента фосфогексокиназы, поставляемого дрожжами (молекулу фосфата обозначим буквой Р):

Глюкоза Глюкозо-6-фосфат фруктозо-1,6-фосфат

Как видно из приведенной схемы, фосфорилирование проис­ходит дважды, причем фосфорный эфир глюкозы под действием фермента изомеразы обратимо превращается в фосфорный эфир фруктозы, имеющий симметричное фурановое кольцо. Симмет­ричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает ее последующий разрыв как раз в середине. Распад гексозы на две триозы катализирует фермент альдолаза; в результате распада образуется неравновесная смесь 3-фосфоглицеринового альдегида и фосфодиоксиацетона:

Фосфоглицери-новый альдегид (3,5 %) Фосфодиокси-ацетон (96,5 %)

В дальнейших реакциях участвует только 3-фосфоглицерино­вый альдегид, содержание которого постоянно пополняется под действием фермента изомеразы на молекулы фосфодиоксиацетона.

ІІ этап спиртового брожения - образование пировиноградной кислоты. На втором этапе триозофосфат в виде 3-фосфоглицеринового альдегида под действием окислительного фермента дегидрогеназы окисляется в фосфоглицериновую кислоту, а она при участии соответствую­щих ферментов (фосфоглицеромутазы и энолазы) и системы ЛДФ - АТФ превращается в пировиноградную кислоту:

Вначале каждая молекула 3-фосфоглицеринового альдегида присоединяет к себе еще один остаток фосфорной кислоты (за счет молекулы неорганического фосфора) и образуется 1,3-дифосфоглицериновый альдегид. Затем в анаэробных условиях про­исходит его окисление в 1,3-дифосфоглицериновую кислоту:

Активной группой дегидрогеназы является кофермент сложного органического строения НАД (никотинамидадениндинуклеотид), фиксирующий своим никотинамидным ядром два атома водорода:

НАД+ + 2Н+ + НАД Н2

НАД окисленный НАД восстановленный

Окисляя субстрат, кофермент НАД становится обладателем свободных ионов водорода, что придает ему высокий восстано­вительный потенциал. Поэтому бродящее сусло всегда характеризуется высокой восстанавливающей способностью, что имеет большое практическое значение в виноделии: понижается рН среды, восстанавливаются временно окисленные вещества, погибают патогенные микроорганизмы.

В заключительной фазе II этапа спиртового брожения фермент фосфотрансфераза дважды катализирует перенос остатка фосфорной кислоты, а фосфоглицеромутаза перемещает его от 3-го угле­родного атома ко 2-му, открывая возможность ферменту энолазе образовать пировиноградную кислоту:

1,3-Дифосоглицериновая кислота 2-Фосфогглицериновая кислота Пировиноградная кислота

В связи с тем что из одной молекулы дважды фосфорилированной гексозы (израсходовано 2 АТФ) получаются две молеку­лы дважды фосфорилированных триоз (образовано 4 АТФ), чи­стым энергетическим балансом ферментативного распада саха­ров является образование 2 АТФ. Эта энергия обеспечивает жиз­ненные функции дрожжей и вызывает повышение температуры бродящей среды.

Все реакции, предшествующие образованию пировиноградной кислоты, присущи как анаэробному сбраживанию сахаров, так и дыханию простейших организмов и растений. III этап име­ет отношение только к спиртовому брожению.

III этап спиртового брожения - образование этилового спирта. На заключитель­ном этапе спиртового брожения пировиноградная кислота под действием фермента декарбоксилазы декарбоксилируется с об­разованием ацетальдегида и диоксида углерода, а с участием фермента алкогольдегидрогеназы и кофермента НАД-Н2 проис­ходит восстановление ацетальдегида в этиловый спирт:

Пировиноградная кислота Ацетилальдегид Этиловый спирт

Если в бродящем сусле есть избыток свободной сернистой кислоты, то часть ацетальдегида связывается в альдегидсернистое соединение: в каждом литре сусла 100 мг Н2SO3 связывают 66 мг СН3СОН.

Впоследствии при наличии кислорода это нестойкое соедине­ние распадается, и в виноматериале обнаруживают свободный ацетальдегид, что особенно нежелательно для шампанских и сто­ловых виноматериалов.

В сжатом виде анаэробное превращение гексозы в этиловый спирт может быть представлено следующей схемой:

Как видно из схемы спиртового брожения, сперва образуются фосфорные эфиры гексоз. При этом молекулы глюкозы и фруктозы под действием фермента гексокеназы присоединяют остаток фосфорной кислоты от аденозиттрифосфата (АТФ), при этом образуется глюкоза-6-фосфат и аденозитдифосфат (АДФ).

Глюкоза-6-фосфат под действием фермента изомеразы превращается в фруктозу-6-фосфат, присоединяющий еще один остаток фосфорной кислоты из АТФ и образующий фруктозу-1,6-дифосфат. Эта реакция катализируется фосфофруктокиназой. Образованием этого химического соединения заканчивается первая подготовительная стадия анаэробного распада сахаров.

В результате этих реакций молекула сахара переходит в оксиформу, приобретает большую лабильность и становится более способной к ферментативным преобразованиям.

Под влиянием фермента альдолазы фруктоза-1, 6-дифосфат расщепляется на глицеринальдегидофосфорную и диоксиацетонофосфорную кислоты, способные превращаться одна в одну под действием фермента триозофосфатизомеразы. Дальнейшему преобразованию подвергается фосфоглицериновый альдегид, которого образуется приблизительно 3 % по сравнению с 97 % фосфодиоксиацетона. Фосфодиоксиацетон, по мере использования фосфоглицеринового альдегида, превращается под действием изомеразы фосфотриоз в 3-фосфоглицериновый альдегид.

На второй стадии 3-фосфоглицериновый альдегид присоединяет еще один остаток фосфорной кислоты (за счет неорганического фосфора) с образованием 1, 3-дифосфоглицеринового альдегида, который дегидруется под действием триозофосфатдегидрогеназы и дает 1, 3-дифосфоглицериновую кислоту. Водород, в этом случае, переносится на окисленную форму кофермента НАД. 1, 3-дифосфоглицериновая кислота, отдавая АДФ (под действием фермента фосфоглицераткеназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту. Последняя, под действием фосфопируватгидротазы, превращается в фосфоэнолпировиноградную кислоту. Дальше, при участии фермента пируваткеназы, фосфоэнолпировиноградная кислота передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула энолпировиноградной кислоты переходит в пировиноградную кислоту.

Третья стадия спиртового брожения характеризуется расщеплением пировиноградной кислоты под действием фермента пируватдекарбоксилазы на диоксид углерода и уксусный альдегид, который под действием фермента алкогольдегидрогеназы (коферментом ее является НАД) восстанавливается в этиловый спирт.

Суммарное уравнение спиртового брожения может быть представлено так :

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О

Таким образом, при брожении происходит преобразование одной молекулы глюкозы в две молекулы этанола и две молекулы диоксида углерода.

Но указанный ход брожения не единственный. Если, например, в субстрате нет фермента пируватдекарбоксилазы, то не происходит расщепление пировиноградной кислоты до уксусного альдегида и восстановлению подвергается непосредственно пировиноградная кислота, превращаясь в молочную кислоту в присутствии лактатдегидрогеназы.

В виноделии брожение глюкозы и фруктозы происходит в присутствии бисульфита натрия. Уксусный альдегид, образующийся при декарбоксилировании пировиноградной кислоты, удаляется в результате связывания бисульфитом. Место уксусного альдегида занимают диоксиацетонфосфат и 3-фосфоглицериновый альдегид, они получают водород от восстановленных химических соединений, образуя глицерофосфат, который превращается в результате дефосфорилирования в глицерин. Это вторая форма брожения по Нейбергу. По этой схеме спиртового брожения происходит накопление глицерина и уксусного альдегида в виде бисульфитной производной.

Вещества, образующиеся при брожении.

В настоящее время в продуктах брожения найдено около 50 высших спиртов, которые обладают разнообразными запаха­ми и существенно влияют на аромат и букет вина. В наиболь­ших количествах при брожении образуются изоамиловый, изобутиловый и N-пропиловый спирты. В мускатных игристых и столовых полусладких винах, получаемых путем так называемого биологического азотопонижения, в большом количестве (до 100 мг/дм3) найдены ароматические высшие спирты β-фенилэтанол (ФЭС), тирозол, терпеновый спирт фарнезол, обладающие ароматом розы, ландыша, цветов липы. Их присутствие в неболь­шом количестве желательно. Кроме того, при выдержке вина высшие спирты вступают в этерификацию с летучими кислотами и образуют сложные эфиры, придающие вину благоприятные эфирные тона зрелости букета.

В дальнейшем было доказано, что основная масса алифатических высших спиртов образуется из пировиноградной кислоты путем переаминирования и непосредственного биосинтеза с участием аминокислот и ацетальдегида. Но наиболее ценные ароматические высшие спирты образуются только из соответствующих аминокислот ароматического ряда, например:

Образование высших спиртов в вине зависит от многих факторов. В нормальных условиях их накапливается в среднем 250 мг/дм3. При медленном длительном брожении количество высших спиртов возрастает, при повышении температуры брожения до 30 °С - уменьшается. В условиях поточного непрерывно брожения размножение дрожжей очень ограничено и высших спиртов образуется меньше, чем при периодическом способе брожения.

При уменьшении количества дрожжевых клеток в результате охлаждения, отстаивания и грубой фильтрации забродившего сусла происходит медленное накопление биомассы дрожжей и одновременно растет количество высших спиртов, прежде всего ароматического ряда.

Повышенное количество высших спиртов нежелательно для столовых белых сухих, шампанских и коньячных виноматериалов, однако придает многообразие оттенков в аромате и вкусе красным столовым, игристым и крепким винам.

Спиртовое брожение виноградного сусла связано также с образованием высокомолекулярных альдегидов и кетонов, летучих и жирных кислот и их эфиров, имеющих значение в формировании букета и вкуса вина.

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз .

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

А + О 2 → АО 2 ,

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

АН 2 + В → А + ВН 2

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe 2+ → Fe 3+ + e — .

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н 2:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2 .

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

  1. С 3 Н 4 О 3 → СО 2 + СН 3 СОН,
  2. СН 3 СОН + НАД·Н 2 → С 2 Н 5 ОН + НАД + .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

С 3 Н 4 О 3 + НАД·Н 2 → С 3 Н 6 О 3 + НАД + .

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО 2 ; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н 2 , ФАД·Н 2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С 6 Н 12 О 6 + 6Н 2 О → 6СО 2 + 4АТФ + 12Н 2 .

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

О 2 + e — → О 2 — .

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О 2 —), с другой — положительно (за счет Н +). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

1. Могут ли фото- и хемосинтезирующие организмы получать энергию благодаря окислению органики ? Конечно, могут. Для растений и хемосинтетиков характерно окисление, им ведь нужна энергия! Однако автотрофы будут окислять те вещества, которые они сами синтезировали.

2. Зачем аэробным организмам кислород ? Какова роль биологического окисления? Кислород явялется конечным акцептором электронов , которые приходят с более высоких энергетических уровней окисляемых веществ. В ходе этого процесса электроны высвобождают значительное количество энергии , и роль окисления именно в этом! Окисление - это потеря электронов или атома водорода, восстановление - их присоединение.

3. В чем разница горения и биологического окисления? В результате горения вся энергия полностью выделяется в виде тепла . Но при окислении всё сложнее: только 45 процентов энергии тоже выделяется в виде тепла и расходуется для поддержания нормальной температуры тела. Но 55 процентов - в виде энергии АТФ и прочих биологических аккумуляторов. Следовательно, большая часть энергии все же идет на создание высокоэнергетических связей .

Этапы энергетического обмена

1. Подготовительный этап характеризуется расщеплением полимеров до мономеров (полисахариды превращаются в глюкозу, белки в аминокислоты), жиров до глицерина и жирных кислот. На данном этапе выделяется некоторое количество энергии в виде тепла. Процесс протекает в клетке в лизосомах , на уровне организма - в пищеварительной системе . Вот почему после начала процесса пищеварения температура тела повышается.

2. Гликолиз , или бескислородный этап - происходит неполное окисление глюкозы.

3. Кислородный этап - окончательное расщепление глюкозы.

Гликолиз

1. Гликолиз идет в цитоплазме. Глюкоза С 6 H 12 О 6 расщепляется до ПВК (пировиноградной кислоты) С 3 H 4 О 3 - на две трехуглеродные молекулы ПВК. Здесь участвуют 9 разных ферментов.

1) При этом у двух молекул ПВК на 4 атома водорода меньше, чем у глюкозы С 6 H 12 О 6 , С 3 H 4 О 3 - ПВК (2 молекулы - С 6 H 8 O 6).

2) Куда расходуются 4 атома водорода? За счет 2 атомов восстанавливаются 2 атома НАД+ в два НАД H . За счет других 2 атомов водорода ПВК сможет превратиться в молочную кислоту С 3 H 6 О 3 .

3) А за счет энергии электронов, перенесенных с высоких энергетических уровней глюкозы на более низкий уровень НАД+, синтезируются 2 молекулы АТФ из АДФ и фосфорной кислоты.

4) Часть энергии растрачивается в виде тепла .

2. Если кислород в клетке отсутствует, или его мало, то 2 молекулы ПВК восстанавливаются за счет двух НАДH до молочной кислоты : 2С 3 H 4 О 3 + 2НАДH + 2H+ = 2С 3 H 6 О 3 (молочная кислота) + 2HАД+. Присутствие молочной кислоты является причиной боли в мышцах при нагрузках и недостатке кислорода. После активной нагрузки кислота отправляется в печень, где от нее отщепляется водород, то есть она снова превращается в ПВК. Эта ПВК может уйти в митохондрии для полного расщепления и образования АТФ. Часть АТФ расходуется и на то, чтобы превратить большую часть ПВК снова в глюкозу путем обращения гликолиза. Глюкоза с кровью пойдет в мышцы и будет храниться в виде гликогена .

3. В результате бескислородного окисления глюкозы создается всего 2 молекулы АТФ .

4. Если в клетке уже есть, или начинает в нее поступать кислород , ПВК уже не может восстановиться до молочной кислоты, а отправляется в митохондрии, где идет ее полное окисление до С O 2 и H 2 О .

Брожение

1. Брожение - это анаэробный (бескислородный) метаболический распад молекул различных питательных веществ, например, глюкозы.

2. Спиртовое, молочнокислое, маслянокислое, ускуснокислое брожение идет в анаэробных условиях в цитоплазме. По сути, как процесс брожение соответствует гликолизу.

3. Спиртовое брожение специфично для дрожжей, некоторых грибов, растений, бактерий, которые в бескислородных условиях переходят на брожение.

4. Для решения задач важно знать, что в каждом случае при брожении из глюкозы выделяется 2 АТФ, спирт, либо кислоты - масляная, уксусная, молочная. При спиртовом (и маслянокислом) брожении из глюкозы выделяются не только спирт, АТФ, но и углекислый газ.

Кислородный этап энергетического обмена включает в себя две стадии.

1. Цикл трикарбоновых кислот (цикл Кребса).

2. Окислительное фосфорилирование.

Тема урока : Неклеточные формы жизни.

Учитель :

Школа:

Район:

Предмет: биология

Класс: 10

Тип урок: Урок –ролевая игра с использование ИКТ.

Цель урока:

Углубить знания учащихся о неклеточных формах жизни;

и заражение вирусом СПИДа.

Задачи урока:

Представление возможности учащимся объединятся по интересам, обеспечивать разнообразие ролевой деятельности; расширить умение работать с дополнительной литературой и материалами Интернета; воспитывать чувство коллективизма; формирование надпредметной компетенции.

Время: 1 ч

Телефон: 72-1- 16

Оборудование: компьютер, проектор, экран, дидактические материалы.

Подготовительный этап:

За неделю до урока из учащихся класса формируют ролевые группы «биологов», «историков», «инфекционистов» и предлагают найти соответствующий материал о неклеточных формах жизни для отчета групп. Учитель предлагает им необходимую литературу и средства Интернета.

Ход урока:

    Организационный момент (1 мин)

    Проверка д/з.- разноуровневая тестированная работа

Тест №1

1)Гликолиз- это процесс расщеплени я :

А) белков на аминокислоты;

Б) липидов на высшие карбоновые кислоты и глицерин;

2)Брожение – это процесс :

А) Расщепление органических веществ в анаэробных условиях;

Б) Окисление глюкозы;

В) Синтез АТФ в митохондриях;

Г) Превращение глюкозы в гликоген.

3)Ассимиляция – это:

А) Образование веществ с использованием энергии;

Б) Распад веществ с выделением энергии.

4) Расположите этапы энергетического обмена углеводов по порядку:

А- клеточное дыхание;

Б- гликолиз;

В-подготовительный.

5) Что такое фосфорилирование ?

А) Образование АТФ;

Б) Образование молекул молочной кислоты;

В)Распад молекул молочной кислоты .

Тест №2

1)Где происходят первый и второй этапы расщепления высокомолекулярных соединений: А) цитоплазме; Б)митохондриях: В)лизосомах Г)комплексе Гольджи.

2) В клетках каких организмов происходит спиртовое брожение :

А) животных и растений; Б) растений и грибов.

3)Энергетическим эффектом гликолиза является образование

2 молекул:

А) молочной кислоты; Б) пировиноградной кислоты; В)АТФ;

Г) этилового спирта.

4)Почему диссимиляция называется энергическим обменом?

А) поглощается энергия; Б) Выделяется энергия.

5)Что входит в состав рибосом?

А) ДНК; Б) липиды;В) РНК; Г) белки.

Тест №3

1)В чем отличие энергетического обмена у аэробов и анаэробов?

А)- отсутствие подготовительного этапа; Б)отсутствие бескислородного расщепления;в) отсутствие клеточного этапа.

2)Какой из этапов энергетического обмена происходит в митохондриях?

А- подготовительный Б- гликолиз; В-клеточное дыхание

3)какие органические вещества редко расходуются для получения энергии в клетке:

А-белки; Б-жиры;

4)В каких органоидах клетки происходит распад органических веществ:

А-рибосомы Б- лизосомы;В-ядре.

5)Откуда берется энергия для синтеза АТФ из АДФ?

А)- в процессе ассимиляции;Б) – в процессе диссимиляции.

Самоконтроль. Слайд №2

    Актуализация знаний .

Что мы знаем о формах жизни на земле?

Что мы знаем о неклеточных формах жизни?

Зачем нам нужны эти знания?

4. Представление плана и цели работы.

Слайд№3,4

5. Операционно-исполнительский.

Работа первичных групп

а) Выступление гр. «историки» с информацией об открытии

вирусов. Слайд №5

б) Выступление гр, «биологи» с информацией о строении вирусной частицы, о делении вирусов на РНК- и ДНК- содержащие, о строении бактериофага.Слайды №6,7,13

в) Объяснение учителем способа размноженья вирусов, уч-ся работают с тетрадью. Слайд №11

г) Выступление гр. «инфекционисты» с сообщением об инфекционных болезнях человека, животных и растений, вызываемыми вирусами. Слайды № 8,9,10

д) рассказ учителя об опасности заражения вирусом СПИДа. Слайд №12,14

Работа вторичных групп

Ребята формируют группы нового состава. И каждая группа

ищет ответ на предложенный ей вопрос или проблемную задачу. Например: Найдите отличие вирусов от неживой материи? Найдите отличие вирусов от живой материи?

С какой целью во время вирусного заболевания назначают антибиотики?

6. Рефлексивно- оценочный.

Проверка работы групп;Слайд№15

Выполнение теста;

Проверь себя

1 Вирусы бактерий ____________

2 Фермент ревертаза присутствует у вируса ________

3Оболочка вируса ______________

4 Свободноживущая форма вируса _____________

5 Количество нуклеиновых кислот в клетках вируса _

6 Вирусы каких организмов не описаны __________

7 Вирусныеболезни____________________________

Взаимоконтроль.

7.Подведение итогов урока

8.Творческое домашнее задание

- составление кроссворда;

Составление кластера по данной теме.

Источники информации

    Н. В. Чебышев Биология новейший справочник.М-2007 г.

    http //schols .keldysh .ru /scyooll 11413/bio /viltgzh /str 2.htm

Пар.22 В клетках каких организмов происходит спиртовое брожение? В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение-, молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2. Откуда берется энергия для синтеза АТФ из АДФ? Выделяется в процессе диссимиляции, т. е. в реакциях расщепления органических веществ в клетке. В зависимости от специфики организма и условий его обитания диссимиляция может проходить в два или три этапа. Какие этапы выделяют в энергетическом обмене? 1 –подготовительный;заключ.в распаде крупных органических молекул до более простых: полисах.-моносах., липиды-глиц.и жир. кислоты, белки-а.к. Расщепление происходит в ПС. Энергии выделяется мало, при этом она рассеивается в виде тепла. Образующиеся соединения (моносах.,жир.кислоты, а.к. и др.) могут использоваться клеткой в реакциях пласт.обмена, а также для дальнейшего расщ-я с целью получения энергии. 2- бескислородный=гликолиз (ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ; при аэробных условиях ведёт к образ.пировиноградной кислоты, в анаэроб. условиях ведёт к образованию молочной кислоты); С6Н12О6 + 2Н3Р04 + 2АДФ --- 2С3Н6О3 + 2АТФ + 2Н2О. заключается в ферментативном расщ-ии орг.вещ-в, которые были получены в ходе подгот.этапа. О2 в реакциях этого этапа не участвует. Реакции гликолиза катализируются многими ферментами и протекают в цитоплазме клеток. 40% энергии сохраняется в молекулах АТФ, 60% рассеивается в виде тепла. Глюкоза распадается не до конечных продуктов (СО2 и Н2О), а до соединений, которые еще богаты энергией и, окисляясь далее, могут дать ее в больших количествах (молочная кислота, этиловый спирт и др.). 3- кислородный (клет.дыхание); органические вещества, образ.в ходе 2 этапа и содержащие большие запасы хим.энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс происходит в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ: 2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 - 6СО2 + 42Н2О + З6АТФ. Выделяется большое кол-во энергии, 55% запас.в виде АТФ, 45% рассеивается в виде тепла. В чем отличия энергетич.обмена у аэробов и анаэробов? Больш-во жив.существ, обитающих на Земле, относятся к аэробам, т.е. используют в процессах ОВ О2 из окружающей среды. У аэробов энерг.обмен происходит в 3 этапа: подготов., бескислор.и кислород. В результате этого орган.вещ-ва распадаются до простейших неорган.соединений. У организмов, обитающих в бескислор.среде и не нуждающихся в кислороде, - анаэробов, а также у аэробов при недостатке кислорода ассимиляция происходит в два этапа: подготовительный и бескислородный. В двухэтапном варианте энергетического обмена энергии запасается гораздо меньше, чем в трехэтапном. ТЕРМИНЫ: Фосфорилирование – присоединение 1 остатка фосф.кислоты к молекуле АДФ. Гликолиз - ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ; при аэробных условиях ведёт к образ.пировиноградной кислоты, в анаэроб. условиях ведёт к образованию молочной кислоты. Спиртовое брожение – хим.реакция брожения в результате которой молекула глюкозы в анаэроб.условиях превращ.в этиловый спирт и СО2 Пар.23 Какие организмы являются гетеротрофами? Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических (жив-е, грибы, мн.бактерии, клетки раст-й, не способ.к фотосинтезу) Какие организмы на Земле практически не зависят от энергии солнечного света? Хемотрофы - используют для синтеза органических веществ энергию, высвобождающуюся в ходе химических превращений неорганических соединений. ТЕРМИНЫ: Питание - совокупность процессов, включающих поступление в организм, переваривание, всасывание и усвоение им пищевых веществ. В процессе питания организмы получают химические соединения, используемые ими для всех процессов жизнедеятельности. Автотрофы - организмы, синтезирующие органические соединения из неорганических, получая из окружающей среды углерод в виде СО2, воду и мин.соли. Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических (жив-е, грибы, мн.бактерии, клетки раст-й, не способ.к фотосинтезу)



Похожие публикации