Медицинский портал. Анализы. Болезни. Состав. Цвет и запах

Распределение биномиальное: определение, формула, примеры. Биномиальное распределение Биномиальное распределение имеет следующие параметры

Глава 7.

Конкретные законы распределения случайных величин

Виды законов распределения дискретных случайных величин

Пусть дискретная случайная величина может принимать значения х 1 , х 2 , …, х n , … . Вероятности этих значений могут быть вычислены по различным формулам, например, при помощи основных теорем теории вероятностей, формулы Бернулли или по каким-то другим формулам. Для некоторых из этих формул закон распределения имеет свое название.

Наиболее часто встречающимися законами распределения дискретной случайной величины являются биномиальный, геометрический, гипергеометрический, закон распределения Пуассона.

Биномиальный закон распределения

Пусть производится n независимых испытаний, в каждом из которых может появиться или не появиться событие А . Вероятность появления этого события в каждом единичном испытании постоянна, не зависит от номера испытания и равна р =Р (А ). Отсюда вероятность не появления события А в каждом испытании также постоянна и равна q =1–р . Рассмотрим случайную величину Х равную числу появлений события А в n испытаниях. Очевидно, что значения этой величины равны

х 1 =0 – событие А в n испытаниях не появилось;

х 2 =1 – событие А в n испытаниях появилось один раз;

х 3 =2 – событие А в n испытаниях появилось два раза;

…………………………………………………………..

х n +1 = n – событие А в n испытаниях появилось все n раз.

Вероятности этих значений могут быть вычислены по формуле Бернулли (4.1):

где к =0, 1, 2, …, n .

Биномиальным законом распределения Х , равной числу успехов в n испытаниях Бернулли, с вероятностью успеха р .

Итак, дискретная случайная величина имеет биномиальное распределение (или распределена по биномиальному закону), если ее возможные значения 0, 1, 2, …, n , а соответствующие вероятности вычисляются по формуле (7.1).

Биномиальное распределение зависит от двух параметров р и n .

Ряд распределения случайной величины, распределенной по биномиальному закону, имеет вид:

Х k n
Р

Пример 7.1 . Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0,4. Случайная величина Х – число попаданий в мишень. Построить ее ряд распределения.

Решение. Возможными значениями случайной величины Х являются х 1 =0; х 2 =1; х 3 =2; х 4 =3. Найдем соответствующие вероятности, используя формулу Бернулли. Нетрудно показать, что применение этой формулы здесь вполне оправдано. Отметим, что вероятность не попадания в цель при одном выстреле будет равна 1-0,4=0,6. Получим

Ряд распределения имеет следующий вид:

Х
Р 0,216 0,432 0,288 0,064

Нетрудно проверить, что сумма всех вероятностей равна 1. Сама случайная величина Х распределена по биномиальному закону. ■

Найдем математическое ожидание и дисперсию случайной величины, распределенной по биномиальному закону.

При решении примера 6.5 было показано, что математическое ожидание числа появлений события А в n независимых испытаниях, если вероятность появления А в каждом испытании постоянна и равна р , равно n ·р

В этом примере использовалась случайная величина, распределенная по биномиальному закону. Поэтому решение примера 6.5, по сути является доказательством следующей теоремы.

Теорема 7.1. Математическое ожидание дискретной случайной величины, распределенной по биномиальному закону, равно произведению числа испытаний на вероятность "успеха", т.е. М (Х )= n ·р.

Теорема 7.2. Дисперсия дискретной случайной величины, распределенной по биномиальному закону, равна произведению числа испытаний на вероятность "успеха" и на вероятность "неудачи", т.е. D (Х )= nрq.

Асимметрия и эксцесс случайной величины, распределенной по биномиальному закону, определяются по формулам

Эти формулы можно получить, воспользовавшись понятием начальных и центральных моментов.

Биномиальный закон распределения лежит в основе многих реальных ситуаций. При больших значениях n биномиальное распределение может быть аппроксимировано с помощью других распределений, в частности с помощью распределения Пуассона.

Распределение Пуассона

Пусть имеется n испытаний Бернулли, при этом число испытаний n достаточно велико. Ранее было показано, что в этом случае (если к тому же вероятность р события А очень мала) для нахождения вероятности того, что событие А появиться т раз в испытаниях можно воспользоваться формулой Пуассона (4.9). Если случайная величина Х означает число появлений события А в n испытаниях Бернулли, то вероятность того, что Х примет значение k может быть вычислена по формуле

, (7.2)

где λ = .

Законом распределения Пуассона называется распределение дискретной случайной величины Х , для которой возможными значениями являются целые неотрицательные числа, а вероятности р т этих значений находятся по формуле (7.2).

Величина λ = называется параметром распределения Пуассона.

Случайная величина, распределенная по закону Пуассона, может принимать бесконечное множество значений. Так как для этого распределения вероятность р появления события в каждом испытании мала, то это распределение иногда называют законом редких явлений.

Ряд распределения случайной величины, распределенной по закону Пуассона, имеет вид

Х т
Р

Нетрудно убедиться, что сумма вероятностей второй строки равна 1. Для этого необходимо вспомнить, что функцию можно разложить в ряд Маклорена, который сходится для любого х . В данном случае имеем

. (7.3)

Как было отмечено, закон Пуассона в определенных предельных случаях заменяет биномиальный закон. В качестве примера можно привести случайную величину Х , значения которой равны количеству сбоев за определенный промежуток времени при многократном применении технического устройства. При этом предполагается, что это устройство высокой надежности, т.е. вероятность сбоя при одном применении очень мала.

Кроме таких предельных случаев, на практике встречаются случайные величины, распределенные по закону Пуассона, не связанные с биномиальным распределением. Например, распределение Пуассона часто используется тогда, когда имеют дело с числом событий, появляющихся в промежутке времени (число поступлений вызовов на телефонную станцию в течение часа, число машин, прибывших на авто мойку в течение суток, число остановок станков в неделю и т.п.). Все эти события должны образовывать, так называемый поток событий, который является одним из основных понятий теории массового обслуживания. Параметр λ характеризует среднюю интенсивность потока событий.

Пример 7.2 . На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения для трех студентов данного факультета?

Решение . Так как число студентов n =500 достаточно велико и р – вероятность родится первого сентября любому из студентов равна , т.е. достаточно мала, то можно считать, что случайная величина Х – число студентов, родившихся первого сентября, распределена по закону Пуассона с параметром λ = np = =1,36986. Тогда, по формуле (7.2) получим

Теорема 7.3. Пусть случайная величинаХ распределена по закону Пуассона. Тогда ее математическое ожидание и дисперсия равны друг другу и равны значению параметра λ , т.е. M (X ) = D (X ) = λ = np .

Доказательство. По определению математического ожидания, используя формулу (7.3) и ряд распределения случайной величины, распределенной по закону Пуассона, получим

Прежде, чем найти дисперсию, найдем вначале математическое ожидание квадрата рассматриваемой случайной величины. Получаем

Отсюда, по определению дисперсии, получаем

Теорема доказана.

Применяя понятия начальных и центральных моментов, можно показать, что для случайной величины, распределенной по закону Пуассона, коэффициенты асимметрии и эксцесса определяются по формулам

Нетрудно понять, что, так как по смысловому содержанию параметр λ = np положителен, то у случайной величины, распределенной по закону Пуассона, всегда положительны и асимметрия и эксцесс.


Конечно, при вычислении кумулятивной функции распределения следует воспользоваться упомянутой связью биномиального и бета- распределения. Этот способ заведомо лучше непосредственного суммирования, когда n > 10.

В классических учебниках по статистике для получения значений биномиального распределения часто рекомендуют использовать формулы, основанные на предельных теоремах (типа формулы Муавра-Лапласа). Необходимо отметить, что с чисто вычислительной точки зрения ценность этих теорем близка к нулю, особенно сейчас, когда практически на каждом столе стоит мощный компьютер. Основной недостаток приведенных аппроксимаций – их совершенно недостаточная точность при значениях n, характерных для большинства приложений. Не меньшим недостатком является и отсутствие сколько-нибудь четких рекомендаций о применимости той или иной аппроксимации (в стандартных текстах приводятся лишь асимптотические формулировки, они не сопровождаются оценками точности и, следовательно, мало полезны). Я бы сказал, что обе формулы пригодны лишь при n < 200 и для совсем грубых, ориентировочных расчетов, причем делаемых “вручную” с помощью статистических таблиц. А вот связь между биномиальным распределением и бета-распределением позволяет вычислять биномиальное распределение достаточно экономно.

Я не рассматриваю здесь задачу поиска квантилей: для дискретных распределений она тривиальна, а в тех задачах, где такие распределения возникают, она, как правило, и не актуальна. Если же квантили все-таки понадобятся, рекомендую так переформулировать задачу, чтобы работать с p-значениями (наблюденными значимостями). Вот пример: при реализации некоторых переборных алгоритмов на каждом шаге требуется проверять статистическую гипотезу о биномиальной случайной величине. Согласно классическому подходу на каждом шаге нужно вычислить статистику критерия и сравнить ее значение с границей критического множества. Поскольку, однако, алгоритм переборный, приходится определять границу критического множества каждый раз заново (ведь от шага к шагу объем выборки меняется), что непроизводительно увеличивает временные затраты. Современный подход рекомендует вычислять наблюденную значимость и сравнивать ее с доверительной вероятностью, экономя на поиске квантилей.

Поэтому в приводимых ниже кодах отсутствует вычисление обратной функции, взамен приведена функция rev_binomialDF , которая вычисляет вероятность p успеха в отдельном испытании по заданному количеству n испытаний, числу m успехов в них и значению y вероятности получить эти m успехов. При этом используется вышеупомянутая связь между биномиальным и бета распределениями.

Фактически, эта функция позволяет получать границы доверительных интервалов. В самом деле, предположим, что в n биномиальных испытаниях мы получили m успехов. Как известно, левая граница двухстороннего доверительного интервала для параметра p с доверительным уровнем равна 0, если m = 0, а для является решением уравнения . Аналогично, правая граница равна 1, если m = n, а для является решением уравнения . Отсюда вытекает, что для поиска левой границы мы должны решать относительно уравнение , а для поиска правой – уравнение . Они и решаются в функциях binom_leftCI и binom_rightCI , возвращающих верхнюю и нижнюю границы двустороннего доверительного интервала соответственно.

Хочу заметить, что если не нужна совсем уж неимоверная точность, то при достаточно больших n можно воспользоваться следующей аппроксимацией [Б.Л. ван дер Варден, Математическая статистика. М: ИЛ, 1960, гл. 2, разд. 7]: , где g – квантиль нормального распределения. Ценность этой аппроксимации в том, что имеются очень простые приближения, позволяющие вычислять квантили нормального распределения (см. текст о вычислении нормального распределения и соответствующий раздел данного справочника). В моей практике (в основном, при n > 100) эта аппроксимация давала примерно 3-4 знака, чего, как правило, вполне достаточно.

Для вычислений с помощью нижеследующих кодов потребуются файлы betaDF.h , betaDF.cpp (см. раздел о бета-распределении), а также logGamma.h , logGamma.cpp (см. приложение А). Вы можете посмотреть также пример использования функций.

Файл binomialDF.h

#ifndef __BINOMIAL_H__ #include "betaDF.h" double binomialDF(double trials, double successes, double p); /* * Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом. * Вычисляется вероятность B(successes|trials,p) того, что число * успехов заключено между 0 и "successes" (включительно). */ double rev_binomialDF(double trials, double successes, double y); /* * Пусть известна вероятность y наступления не менее m успехов * в trials испытаниях схемы Бернулли. Функция находит вероятность p * успеха в отдельном испытании. * * В вычислениях используется следующее соотношение * * 1 - p = rev_Beta(trials-successes| successes+1, y). */ double binom_leftCI(double trials, double successes, double level); /* Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "successes". * Вычисляется левая граница двустороннего доверительного интервала * с уровнем значимости level. */ double binom_rightCI(double n, double successes, double level); /* Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "successes". * Вычисляется правая граница двустороннего доверительного интервала * с уровнем значимости level. */ #endif /* Ends #ifndef __BINOMIAL_H__ */

Файл binomialDF.cpp

/***********************************************************/ /* Биномиальное распределение */ /***********************************************************/ #include #include #include "betaDF.h" ENTRY double binomialDF(double n, double m, double p) /* * Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом. * Вычисляется вероятность B(m|n,p) того, что число успехов заключено * между 0 и "m" (включительно), т.е. * сумму биномиальных вероятностей от 0 до m: * * m * -- (n) j n-j * > () p (1-p) * -- (j) * j=0 * * Вычисления не подразумевают тупое суммирование - используется * следующая связь с центральным бета-распределением: * * B(m|n,p) = Beta(1-p|n-m,m+1). * * Аргументы должны быть положительными, причем 0 <= p <= 1. */ { assert((n > 0) && (p >= 0) && (p <= 1)); if (m < 0) return 0; else if (m == 0) return pow(1-p, n); else if (m >= n) return 1; else return BetaDF(n-m, m+1).value(1-p); }/* binomialDF */ ENTRY double rev_binomialDF(double n, double m, double y) /* * Пусть известна вероятность y наступления не менее m успехов * в n испытаниях схемы Бернулли. Функция находит вероятность p * успеха в отдельном испытании. * * В вычислениях используется следующее соотношение * * 1 - p = rev_Beta(y|n-m,m+1). */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0) && (y <= 1)); return 1-BetaDF(n-m, m+1).inv(y); }/*rev_binomialDF*/ ENTRY double binom_leftCI(double n, double m, double y) /* Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "m". * Вычисляется левая граница двухстороннего доверительного интервала * с уровнем значимости y. */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0.5) && (y < 1)); return BetaDF(m, n-m+1).inv((1-y)/2); }/*binom_leftCI*/ ENTRY double binom_rightCI(double n, double m, double y) /* Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "m". * Вычисляется правая граница доверительного интервала * с уровнем значимости y. */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0.5) && (y < 1)); return BetaDF(m+1, n-m).inv((1+y)/2); }/*binom_rightCI*/

Рассмотрим Биномиальное распределение, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL БИНОМ.РАСП() построим графики функции распределения и плотности вероятности. Произведем оценку параметра распределения p, математического ожидания распределения и стандартного отклонения. Также рассмотрим распределение Бернулли.

Определение . Пусть проводятся n испытаний, в каждом из которых может произойти только 2 события: событие «успех» с вероятностью p или событие «неудача» с вероятностью q =1-p (так называемая Схема Бернулли, Bernoulli trials ).

Вероятность получения ровно x успехов в этих n испытаниях равна:

Количество успехов в выборке x является случайной величиной, которая имеет Биномиальное распределение (англ. Binomial distribution ) p и n являются параметрами этого распределения.

Напомним, что для применения схемы Бернулли и соответственно Биномиального распределения, должны быть выполнены следующие условия:

  • каждое испытание должно иметь ровно два исхода, условно называемых «успехом» и «неудачей».
  • результат каждого испытания не должен зависеть от результатов предыдущих испытаний (независимость испытаний).
  • вероятность успеха p должна быть постоянной для всех испытаний.

Биномиальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для имеется функция БИНОМ.РАСП() , английское название - BINOM.DIST(), которая позволяет вычислить вероятность того, что в выборке будет ровно х «успехов» (т.е. функцию плотности вероятности p(x), см. формулу выше), и интегральную функцию распределения (вероятность того, что в выборке будет x или меньше «успехов», включая 0).

До MS EXCEL 2010 в EXCEL была функция БИНОМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности p(x). БИНОМРАСП() оставлена в MS EXCEL 2010 для совместимости.

В файле примера приведены графики плотности распределения вероятности и .

Биномиальное распределения имеет обозначение B ( n ; p ) .

Примечание : Для построения интегральной функции распределения идеально подходит диаграмма типа График , для плотности распределения Гистограмма с группировкой . Подробнее о построении диаграмм читайте статью Основные типы диаграмм.

Примечание : Для удобства написания формул в файле примера созданы Имена для параметров Биномиального распределения : n и p.

В файле примера приведены различные расчеты вероятности с помощью функций MS EXCEL:

Как видно на картинке выше, предполагается, что:

  • В бесконечной совокупности, из которой делается выборка, содержится 10% (или 0,1) годных элементов (параметр p , третий аргумент функции = БИНОМ.РАСП() )
  • Чтобы вычислить вероятность, того что в выборке из 10 элементов (параметр n , второй аргумент функции) будет ровно 5 годных элементов (первый аргумент), нужно записать формулу: =БИНОМ.РАСП(5; 10; 0,1; ЛОЖЬ)
  • Последний, четвертый элемент, установлен =ЛОЖЬ, т.е. возвращается значение функции плотности распределения .

Если значение четвертого аргумента =ИСТИНА, то функция БИНОМ.РАСП() возвращает значение интегральной функции распределения или просто Функцию распределения . В этом случае можно рассчитать вероятность того, что в выборке количество годных элементов будет из определенного диапазона, например, 2 или меньше (включая 0).

Для этого нужно записать формулу: = БИНОМ.РАСП(2; 10; 0,1; ИСТИНА)

Примечание : При нецелом значении х, . Например, следующие формулы вернут одно и тоже значение: =БИНОМ.РАСП( 2 ; 10; 0,1; ИСТИНА) =БИНОМ.РАСП( 2,9 ; 10; 0,1; ИСТИНА)

Примечание : В файле примера плотность вероятности и функция распределения также вычислены с использованием определения и функции ЧИСЛКОМБ() .

Показатели распределения

В файле примера на листе Пример имеются формулы для расчета некоторых показателей распределения:

  • =n*p;
  • (квадрата стандартного отклонения) = n*p*(1-p);
  • = (n+1)*p;
  • =(1-2*p)*КОРЕНЬ(n*p*(1-p)).

Выведем формулу математического ожидания Биномиального распределения , используя Схему Бернулли .

По определению случайная величина Х в схеме Бернулли (Bernoulli random variable) имеет функцию распределения :

Это распределение называется распределение Бернулли .

Примечание : распределение Бернулли – частный случай Биномиального распределения с параметром n=1.

Сгенерируем 3 массива по 100 чисел с различными вероятностями успеха: 0,1; 0,5 и 0,9. Для этого в окне Генерация случайных чисел установим следующие параметры для каждой вероятности p:

Примечание : Если установить опцию Случайное рассеивание ( Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию =25 можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца по 100 чисел, на основании которых можно, например, оценить вероятность успеха p по формуле: Число успехов/100 (см. файл примера лист ГенерацияБернулли ).

Примечание : Для распределения Бернулли с p=0,5 можно использовать формулу =СЛУЧМЕЖДУ(0;1) , которая соответствует .

Генерация случайных чисел. Биномиальное распределение

Предположим, что в выборке обнаружилось 7 дефектных изделий. Это означает, что «очень вероятна» ситуация, что изменилась доля дефектных изделий p , которая является характеристикой нашего производственного процесса. Хотя такая ситуация «очень вероятна», но существует вероятность (альфа-риск, ошибка 1-го рода, «ложная тревога»), что все же p осталась без изменений, а увеличенное количество дефектных изделий обусловлено случайностью выборки.

Как видно на рисунке ниже, 7 – количество дефектных изделий, которое допустимо для процесса с p=0,21 при том же значении Альфа . Это служит иллюстрацией, что при превышении порогового значения дефектных изделий в выборке, p «скорее всего» увеличилось. Фраза «скорее всего» означает, что существует всего лишь 10% вероятность (100%-90%) того, что отклонение доли дефектных изделий выше порогового вызвано только сучайными причинами.

Таким образом, превышение порогового количества дефектных изделий в выборке, может служить сигналом, что процесс расстроился и стал выпускать б о льший процент бракованных изделий.

Примечание : До MS EXCEL 2010 в EXCEL была функция КРИТБИНОМ() , которая эквивалентна БИНОМ.ОБР() . КРИТБИНОМ() оставлена в MS EXCEL 2010 и выше для совместимости.

Связь Биномиального распределения с другими распределениями

Если параметр n Биномиального распределения стремится к бесконечности, а p стремится к 0, то в этом случае Биномиальное распределение может быть аппроксимировано . Можно сформулировать условия, когда приближение распределением Пуассона работает хорошо:

  • p (чем меньше p и больше n , тем приближение точнее);
  • p >0,9 (учитывая, что q =1- p , вычисления в этом случае необходимо производить через q х нужно заменить на n - x ). Следовательно, чем меньше q и больше n , тем приближение точнее).

При 0,110 Биномиальное распределение можно аппроксимировать .

В свою очередь, Биномиальное распределение может служить хорошим приближением , когда размер совокупности N Гипергеометрического распределения гораздо больше размера выборки n (т.е., N>>n или n/N Подробнее о связи вышеуказанных распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

- (binomial distribution) Распределение, позволяющее рассчитать вероятность наступления какого либо случайного события, полученного в результате наблюдений ряда независимых событий, если вероятность наступления, составляющих его элементарных… … Экономический словарь

- (распределение Бернулли) распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна p(0 p 1). Именно, число? появлений этого события есть… … Большой Энциклопедический словарь

биномиальное распределение - — Тематики электросвязь, основные понятия EN binomial distribution …

- (распределение Бернулли), распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0≤р≤1). Именно, число μ появлений этого события… … Энциклопедический словарь

биномиальное распределение - 1.49. биномиальное распределение Распределение вероятностей дискретной случайной величины X, принимающей любые целые значения от 0 до n, такое что при х = 0, 1, 2, ..., n и параметрах n = 1, 2, ... и 0 < p < 1, где Источник … Словарь-справочник терминов нормативно-технической документации

Распределение Бернулли, распределение вероятностей случайной величины X, принимающей целочисленные значения с вероятностями соответственно (биномиальный коэффициент; р параметр Б. р., наз. вероятностью положительного исхода, принимающей значения … Математическая энциклопедия

Распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях. Если при каждом испытании вероятность появления события равна р, причём 0 ≤ p ≤ 1, то число μ появлений этого события при n независимых… … Большая советская энциклопедия

- (распределение Бернулли), распределение вероятностей числа появлений нек рого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0<или = p < или = 1). Именно, число м появлений … Естествознание. Энциклопедический словарь

Биномиальное распределение вероятностей - (binomial distribution) Распределение, которое наблюдается в случаях, когда исход каждого независимого эксперимента (статистического наблюдения) принимает одно из двух возможных значений: победа или поражение, включение или исключение, плюс или … Экономико-математический словарь

биномиальное распределение вероятностей - Распределение, которое наблюдается в случаях, когда исход каждого независимого эксперимента (статистического наблюдения) принимает одно из двух возможных значений: победа или поражение, включение или исключение, плюс или минус, 0 или 1. То есть… … Справочник технического переводчика

Книги

  • Теория вероятностей и математическая статистика в задачах. Более 360 задач и упражнений , Д. А. Борзых. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…
  • Теория вероятностей и математическая статистика в задачах Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…

Рассмотрим осуществление схемы Бернулли , т.е. прозводится серия повторных независимых испытаний, в каждом из которых данное событие А имеет одну и ту же вероятность , не зависящую от номера испытания. И для каждого испытания имеются только два исхода:

1) событие А - успех;

2) событие - неуспех,

с постоянными вероятностями

Введем в рассмотрение дискретную случайную величину Х - «число появлений события А при п испытаниях» и найдем закон распределения этой случайной величины. Величина Х может принимать значения

Вероятность того, что случайную величину Х примет значение x k находится по формуле Бернулли

Закон распределения дискретной случайной величины, определяемый формулой Бернулли (1), называется биномиальным законом распределения . Постоянные п и р (q=1-p) , входящие в формулу (1) называются параметрами биномиального распределения.

Название «биномиальное распределение» связано с тем, что правая часть в равенстве (1) это общий член разложения бинома Ньютона ,т.е.

(2)

А так как p+q=1 , то правая часть равенства (2) равна 1

Это означает, что

(4)

В равенстве (3) первый член q n в правой части означает вероятность того, что в п испытаниях событие А не появится ни разу, второй член вероятность того, что событие А появится один раз, третий член - вероятность, что событие А появится два раза и наконец, последний член р п - вероятность того, что событие А появится ровно п раз.

Биномиальный закон распределения дискретной случайной величины представляют в виде таблицы:

Х 0 1 k n
Р q n р п

Основные числовые характеристики биномиального распределения:

1) математическое ожидание (5)

2) дисперсия (6)

3) среднее квадратическое отклонение (7)

4) наивероятнейшее число появление события k 0 - это число которому при заданном п соответствует максимальная биномиальная вероятность

При заданных п и р это число определяется неравенствами

(8)

если число пр+р не является целым, то k 0 равно целой части этого числа, если же пр+р - целое число, то k 0 имеет два значения

Биномиальный закон распределения вероятностей применяется в теории стрельбы, в теории и практике статистического контроля качества продукции, в теории массового обслуживания, в теории надежности и т.д. Этот закон может применяться во всех случаях, когда имеет место последовательность независимых испытаний.

Пример 1: Проверкой качества установлено, что из каждых 100 приборов не имеют дефекты 90 штук в среднем. Составить биномиальный закон распределения вероятностей числа качественных приборов из приобретенных наугад 4.


Решение: Событие А - появление которого проверяется это - «приобретенный наугад прибор качественный». По условию задачи основные параметры биномиального распределения:

Случайная величина Х - число качественных приборов из взятых 4, значит значения Х -Найдем вероятности значений Х по формуле (1):


Таким образом, закон распределения величины Х - число качественных приборов из взятых 4:

Х 0 1 2 3 4
Р 0,0001 0,0036 0,0486 0,2916 0,6561

Для проверки правильности построения распределения проверим чему равна сумма вероятностей

Ответ: Закон распределения

Х 0 1 2 3 4
Р 0,0001 0,0036 0,0486 0,2916 0,6561

Пример 2: Применяемый метод лечения приводит к выздоровлению в 95 % случаев. Пятеро больных применяли данный метод. Найти наивероятнейшее число выздоровевших, а так же числовые характеристики случайной величины Х - число выздоровевших из 5 больных применявших данный метод.



Похожие публикации